23 research outputs found

    Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model

    Get PDF
    Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures

    Glucose Transporter 1 and Monocarboxylate Transporters 1, 2, and 4 Localization within the Glial Cells of Shark Blood-Brain-Barriers

    Get PDF
    Although previous studies showed that glucose is used to support the metabolic activity of the cartilaginous fish brain, the distribution and expression levels of glucose transporter (GLUT) isoforms remained undetermined. Optic/ultrastructural immunohistochemistry approaches were used to determine the expression of GLUT1 in the glial blood-brain barrier (gBBB). GLUT1 was observed solely in glial cells; it was primarily located in end-feet processes of the gBBB. Western blot analysis showed a protein with a molecular mass of 50 kDa, and partial sequencing confirmed GLUT1 identity. Similar approaches were used to demonstrate increased GLUT1 polarization to both apical and basolateral membranes in choroid plexus epithelial cells. To explore monocarboxylate transporter (MCT) involvement in shark brain metabolism, the expression of MCTs was analyzed. MCT1, 2 and 4 were expressed in endothelial cells; however, only MCT1 and MCT4 were present in glial cells. In neurons, MCT2 was localized at the cell membrane whereas MCT1 was detected within mitochondria. Previous studies demonstrated that hypoxia modified GLUT and MCT expression in mammalian brain cells, which was mediated by the transcription factor, hypoxia inducible factor-1. Similarly, we observed that hypoxia modified MCT1 cellular distribution and MCT4 expression in shark telencephalic area and brain stem, confirming the role of these transporters in hypoxia adaptation. Finally, using three-dimensional ultrastructural microscopy, the interaction between glial end-feet and leaky blood vessels of shark brain was assessed in the present study. These data suggested that the brains of shark may take up glucose from blood using a different mechanism than that used by mammalian brains, which may induce astrocyte-neuron lactate shuttling and metabolic coupling as observed in mammalian brain. Our data suggested that the structural conditions and expression patterns of GLUT1, MCT1, MCT2 and MCT4 in shark brain may establish the molecular foundation of metabolic coupling between glia and neurons

    Preservation of recall immunity in anti-CD3-treated recent onset type 1 diabetes patients.

    No full text
    BACKGROUND: The safety of any immune modulating agent in type 1 diabetes mellitus (T1DM) involves its selectivity on autoimmunity and its preservation of recall and tumour immunity. METHODS: We performed lymphocyte proliferation tests on seven recent onset diabetic patients treated with anti-CD3 (Otelixizumab; ChAglyCD3) and five recent onset diabetic patients treated with placebo, on average 2 years after therapy. RESULTS: Proliferative responses towards common viral, bacterial and yeast antigens upon in vitro stimulation with a range of recall antigens in anti-CD3-treated T1DM patients were highly similar to those in placebo-treated T1DM patients. Similarly, T-cell responses towards autoantigens were equally low between the two groups, several years after diagnosis of T1DM. The proliferative response upon stimulation with the human suppressor protein p53 was invariably high in both anti-CD3- and placebo-treated patients, implying preserved anti-tumour immunity in anti-CD3 treatment. CONCLUSIONS: As long-term focus on side effects is key, we demonstrate in this sub-cohort of recent onset T1DM patients treated with Otelixizumab that recall immunity is preserved in spite of high-dose anti-CD3 treatment, adding to the safety of anti-CD3 treatment as an immune-modulatory agent in the treatment of T1DM

    Bending the curve of terrestrial biodiversity needs an integrated strategy

    No full text
    Increased efforts are required to prevent further losses to terrestrial biodiversity and the ecosystem services that it provides. Ambitious targets have been proposed, such as reversing the declining trends in biodiversity; however, just feeding the growing human population will make this a challenge. Here we use an ensemble of land-use and biodiversity models to assess whether - and how - humanity can reverse the declines in terrestrial biodiversity caused by habitat conversion, which is a major threat to biodiversity. We show that immediate efforts, consistent with the broader sustainability agenda but of unprecedented ambition and coordination, could enable the provision of food for the growing human population while reversing the global terrestrial biodiversity trends caused by habitat conversion. If we decide to increase the extent of land under conservation management, restore degraded land and generalize landscape-level conservation planning, biodiversity trends from habitat conversion could become positive by the mid-twenty-first century on average across models (confidence interval, 2042-2061), but this was not the case for all models. Food prices could increase and, on average across models, almost half (confidence interval, 34-50%) of the future biodiversity losses could not be avoided. However, additionally tackling the drivers of land-use change could avoid conflict with affordable food provision and reduces the environmental effects of the food-provision system. Through further sustainable intensification and trade, reduced food waste and more plant-based human diets, more than two thirds of future biodiversity losses are avoided and the biodiversity trends from habitat conversion are reversed by 2050 for almost all of the models. Although limiting further loss will remain challenging in several biodiversity-rich regions, and other threats - such as climate change - must be addressed to truly reverse the declines in biodiversity, our results show that ambitious conservation efforts and food system transformation are central to an effective post-2020 biodiversity strategy
    corecore