159 research outputs found

    Exploiting tumour addiction with a serine and glycine-free diet.

    Get PDF
    Understanding cancer metabolism is key to unveil the Achilles’ heel of cancer cells and provide novel therapeutic interventions for patients. While the rerouting of metabolic pathways during development1 or cancer transformation and progression2, 3, 4 has been extensively characterised, the exact dynamic of these events, their distribution and frequency in the different tumour types, and the correlation with genetic background remain largely unknown. In a recent article published in Nature, Karen Vousden’s team assesses the effect of serine and glycine dietary restriction in autochthonous mouse tumour models driven by different oncogenes (Maddocks et al, 2017)5, leading to potential area of therapeutic intervention

    Vascular time-activity variation in patients undergoing 123I-MIBG myocardial scintigraphy: implications for quantification of cardiac and mediastinal uptake

    Get PDF
    For the quantification of cardiac (123)I-metaiodobenzylguanidine (MIBG) uptake, the mediastinum is commonly used as a reference region reflecting nonspecific background activity. However, variations in the quantity of vascular structures in the mediastinum and the rate of renal clearance of (123)I-MIBG from the blood pool may contribute to increased interindividual variation in uptake. This study examined the relationship between changes in heart (H) and mediastinal (M) counts and the change in vascular (123)I-MIBG activity, including the effect of renal function. Fifty-one subjects with ischemic heart disease underwent early (15 min) and late (4 h) anterior planar images of the chest following injection of (123)I-MIBG. Vascular (123)I-MIBG activity was determined from venous blood samples obtained at 2 min, 15 min, 35 min, and 4 h post-injection. From the vascular clearance curve of each subject, the mean blood counts/min per ml at the time of each acquisition and the slope of the clearance curve were determined. Renal function was expressed as the estimated creatinine clearance (e-CC) and the estimated glomerular filtration rate (e-GFR). Relations between H and M region of interest (ROI) counts/pixel, vascular activity, and renal function were then examined using linear regression. Changes in ROI activity ratios between early and late planar images could not be explained by blood activity, the slope of the vascular clearance curves, or estimates of renal function. At most 3% of the variation in image counts could be explained by changes in vascular activity (p = 0.104). The e-CC and e-GFR could at best explain approximately 1.5% of the variation in the slopes of the vascular clearance curve (p = 0.194). The change in measured H and M counts between early and late planar (123)I-MIBG images is unrelated to intravascular levels of the radiopharmaceutical. This suggests that changes in M counts are primarily due to decrease in soft tissue activity and scatter from the adjacent lung

    Pin1 Modulates the Type 1 Immune Response

    Get PDF
    BACKGROUND/ABSTRACT: Immune responses initiated by T cell receptor (TCR) and costimulatory molecule mediated signaling culminate in maximal cytokine mRNA production and stability. The transcriptional responses to co-stimulatory T cell signalling involve calcineurin and NF-AT, which can be antagonized by interference with the cis-trans peptidyl-prolyl isomerases (PPIase), cyclophilin A and FKBP. Signalling molecules downstream of CD28 which are essential for the stabilization of cytokine mRNAs are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: We now show that Pin1, a third member of the PPIase family mediates the post-transcriptional regulation of Th1 cytokines by activated T cells. Blockade of Pin1 by pharmacologic or genetic means greatly attenuated IFN-γ, IL-2 and CXCL-10 mRNA stability, accumulation and protein expression after cell activation. In vivo, Pin1 blockade prevented both the acute and chronic rejection of MHC mismatched, orthotopic rat lung transplants by reducing the expression of IFN-γ and CXCL-10. Combined transcriptional and post-transcriptional blockade with cyclosporine A and the Pin1 inhibitor, juglone, was synergistic. CONCLUSIONS/SIGNIFICANCE: These data suggest Pin1 inhibitors should be explored for use as immunosuppressants and employed with available calcineurin inhibitors to reduce toxicity and enhance effectiveness

    Prospective functional classification of all possible missense variants in PPARG.

    Get PDF
    Clinical exome sequencing routinely identifies missense variants in disease-related genes, but functional characterization is rarely undertaken, leading to diagnostic uncertainty. For example, mutations in PPARG cause Mendelian lipodystrophy and increase risk of type 2 diabetes (T2D). Although approximately 1 in 500 people harbor missense variants in PPARG, most are of unknown consequence. To prospectively characterize PPARγ variants, we used highly parallel oligonucleotide synthesis to construct a library encoding all 9,595 possible single-amino acid substitutions. We developed a pooled functional assay in human macrophages, experimentally evaluated all protein variants, and used the experimental data to train a variant classifier by supervised machine learning. When applied to 55 new missense variants identified in population-based and clinical sequencing, the classifier annotated 6 variants as pathogenic; these were subsequently validated by single-variant assays. Saturation mutagenesis and prospective experimental characterization can support immediate diagnostic interpretation of newly discovered missense variants in disease-related genes.This work was supported by grants from the National Institute of Diabetes and Digestive and Kidney Diseases (1K08DK102877-01, to A.R.M.; 1R01DK097768-01, to D.A.), NIH/Harvard Catalyst (1KL2TR001100-01, to A.R.M.), the Broad Institute (SPARC award, to A.R.M. and T.M.), and the Wellcome Trust (095564, to K.C.; 107064, to D.B.S.).This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.370

    Severe Airway Epithelial Injury, Aberrant Repair and Bronchiolitis Obliterans Develops after Diacetyl Instillation in Rats

    Get PDF
    Bronchiolitis obliterans (BO) is a fibrotic lung disease that occurs in a variety of clinical settings, including toxin exposures, autoimmunity and lung or bone marrow transplant. Despite its increasing clinical importance, little is known regarding the underlying disease mechanisms due to a lack of adequate small animal BO models. Recent epidemiological studies have implicated exposure to diacetyl (DA), a volatile component of artificial butter flavoring, as a cause of BO in otherwise healthy factory workers. Our overall hypothesis is that DA induces severe epithelial injury and aberrant repair that leads to the development of BO. Therefore, the objectives of this study were 1) to determine if DA, delivered by intratracheal instillation (ITI), would lead to the development of BO in rats and 2) to characterize epithelial regeneration and matrix repair after ITI of DA.Male Sprague-Dawley rats were treated with a single dose of DA (125 mg/kg) or sterile water (vehicle control) by ITI. Instilled DA resulted in airway specific injury, followed by rapid epithelial regeneration, and extensive intraluminal airway fibrosis characteristic of BO. Increased airway resistance and lung fluid neutrophilia occurred with the development of BO, similar to human disease. Despite rapid epithelial regeneration after DA treatment, expression of the normal phenotypic markers, Clara cell secretory protein and acetylated tubulin, were diminished. In contrast, expression of the matrix component Tenascin C was significantly increased, particularly evident within the BO lesions.We have established that ITI of DA results in BO, creating a novel chemical-induced animal model that replicates histological, biological and physiological features of the human disease. Furthermore, we demonstrate that dysregulated epithelial repair and excessive matrix Tenacin C deposition occur in BO, providing new insights into potential disease mechanisms and therapeutic targets

    Geometry and field theory in multi-fractional spacetime

    Full text link
    We construct a theory of fields living on continuous geometries with fractional Hausdorff and spectral dimensions, focussing on a flat background analogous to Minkowski spacetime. After reviewing the properties of fractional spaces with fixed dimension, presented in a companion paper, we generalize to a multi-fractional scenario inspired by multi-fractal geometry, where the dimension changes with the scale. This is related to the renormalization group properties of fractional field theories, illustrated by the example of a scalar field. Depending on the symmetries of the Lagrangian, one can define two models. In one of them, the effective dimension flows from 2 in the ultraviolet (UV) and geometry constrains the infrared limit to be four-dimensional. At the UV critical value, the model is rendered power-counting renormalizable. However, this is not the most fundamental regime. Compelling arguments of fractal geometry require an extension of the fractional action measure to complex order. In doing so, we obtain a hierarchy of scales characterizing different geometric regimes. At very small scales, discrete symmetries emerge and the notion of a continuous spacetime begins to blur, until one reaches a fundamental scale and an ultra-microscopic fractal structure. This fine hierarchy of geometries has implications for non-commutative theories and discrete quantum gravity. In the latter case, the present model can be viewed as a top-down realization of a quantum-discrete to classical-continuum transition.Comment: 1+82 pages, 1 figure, 2 tables. v2-3: discussions clarified and improved (especially section 4.5), typos corrected, references added; v4: further typos correcte

    Interim 2017/18 influenza seasonal vaccine effectiveness: Combined results from five European studies

    Get PDF
    Between September 2017 and February 2018, influenza A(H1N1)pdm09, A(H3N2) and B viruses (mainly B/Yamagata, not included in 2017/18 trivalent vaccines) co-circulated in Europe. Interim results from five European studies indicate that, in all age groups, 2017/18 influenza vaccine effectiveness was 25 to 52% against any influenza, 55 to 68% against influenza A(H1N1)pdm09, -42 to 7% against influenza A(H3N2) and 36 to 54% against influenza B. 2017/18 influenza vaccine should be promoted where influenza still circulates
    • …
    corecore