279 research outputs found
Process tomography of field damping and measurement of Fock state lifetimes by quantum non-demolition photon counting in a cavity
The relaxation of a quantum field stored in a high- superconducting cavity
is monitored by non-resonant Rydberg atoms. The field, subjected to repetitive
quantum non-demolition (QND) photon counting, undergoes jumps between photon
number states. We select ensembles of field realizations evolving from a given
Fock state and reconstruct the subsequent evolution of their photon number
distributions. We realize in this way a tomography of the photon number
relaxation process yielding all the jump rates between Fock states. The damping
rates of the photon states () are found to increase
linearly with . The results are in excellent agreement with theory including
a small thermal contribution
Phase space tweezers for tailoring cavity fields by quantum Zeno dynamics
We discuss an implementation of Quantum Zeno Dynamics in a Cavity Quantum
Electrodynamics experiment. By performing repeated unitary operations on atoms
coupled to the field, we restrict the field evolution in chosen subspaces of
the total Hilbert space. This procedure leads to promising methods for
tailoring non-classical states. We propose to realize `tweezers' picking a
coherent field at a point in phase space and moving it towards an arbitrary
final position without affecting other non-overlapping coherent components.
These effects could be observed with a state-of-the-art apparatus
Microwave probes Dipole Blockade and van der Waals Forces in a Cold Rydberg Gas
We show that microwave spectroscopy of a dense Rydberg gas trapped on a
superconducting atom chip in the dipole blockade regime reveals directly the
dipole-dipole many-body interaction energy spectrum. We use this method to
investigate the expansion of the Rydberg cloud under the effect of repulsive
van der Waals forces and the breakdown of the frozen gas approximation. This
study opens a promising route for quantum simulation of many-body systems and
quantum information transport in chains of strongly interacting Rydberg atoms.Comment: PACS: 03.67.-a, 32.80.Ee, 32.30.-
Nonprobabilistic teleportation of field state via cavity QED
In this article we discuss a teleportation scheme of coherent states of
cavity field. The experimental realization proposed makes use of cavity quatum
electrodynamics involving the interaction of Rydberg atoms with micromaser and
Ramsey cavities. In our scheme the Ramsey cavities and the atoms play the role
of auxiliary systems used to teleport the state from a micromaser cavity to
another. We show that, even if the correct atomic detection fails in the first
trials, one can succeed in teleportating the cavity field state if the proper
measurement occurs in a later atom
Implementation of stability-based transition model by means of transport equations
A natural laminar-turbulent transition model compatible with Computation Fluid Dynamics is presented. This model accounts for longitudinal transition mechanisms (i.e. Tollmien-Schlichting induced transition) thanks to systematic stability computation on similar boundary profiles from Mach zero to four both on adiabatic and isothermal wall. The model embeds as well the so-called “C1-criterion” for transverse transition mechanisms (i.e. cross-flow waves induced transition). The transition model is written under transport equations formalism and has been implemented in the solver elsA (ONERA-Airbus-Safran property). Validations are performed on three dimensional configurations and comparisons are shown against a database method for natural transition modeling and experiments
Quantum Zeno dynamics of a field in a cavity
We analyze the quantum Zeno dynamics that takes place when a field stored in
a cavity undergoes frequent interactions with atoms. We show that repeated
measurements or unitary operations performed on the atoms probing the field
state confine the evolution to tailored subspaces of the total Hilbert space.
This confinement leads to non-trivial field evolutions and to the generation of
interesting non-classical states, including mesoscopic field state
superpositions. We elucidate the main features of the quantum Zeno mechanism in
the context of a state-of-the-art cavity quantum electrodynamics experiment. A
plethora of effects is investigated, from state manipulations by phase space
tweezers to nearly arbitrary state synthesis. We analyze in details the
practical implementation of this dynamics and assess its robustness by
numerical simulations including realistic experimental imperfections. We
comment on the various perspectives opened by this proposal
Preparation of Long-Lived, Non-Autoionizing Circular Rydberg States of Strontium
Alkaline earth Rydberg atoms are very promising tools for quantum
technologies. Their highly excited outer electron provides them with the
remarkable properties of Rydberg atoms and, notably, with a huge coupling to
external fields or to other Rydberg atoms while the ionic core retains an
optically active electron. However, low angular-momentum Rydberg states suffer
almost immediate autoionization when the core is excited. Here, we demonstrate
that strontium circular Rydberg atoms with a core excited in a metastable
level are impervious to autoionization over more than a few millisecond time
scale. This makes it possible to trap and laser-cool Rydberg atoms. Moreover,
we observe singlet to triplet transitions due to the core optical
manipulations, opening the way to a quantum microwave to optical interface
Degenerate higher order scalar-tensor theories beyond Horndeski up to cubic order
We present all scalar-tensor Lagrangians that are cubic in second derivatives of a scalar field, and that are degenerate, hence avoiding Ostrogradsky instabilities. Thanks to the existence of constraints, they propagate no more than three degrees of freedom, despite having higher order equations of motion. We also determine the viable combinations of previously identified quadratic degenerate Lagrangians and the newly established cubic ones. Finally, we study whether the new theories are connected to known scalar-tensor theories such as Horndeski and beyond Horndeski, through conformal or disformal transformations
Resolution and enhancement in nanoantenna-based fluorescence microscopy
Single gold nanoparticles can act as nanoantennas for enhancing the
fluorescence of emitters in their near-fields. Here we present experimental and
theoretical studies of scanning antenna-based fluorescence microscopy as a
function of the diameter of the gold nanoparticle. We examine the interplay
between fluorescence enhancement and spatial resolution and discuss the
requirements for deciphering single molecules in a dense sample. Resolutions
better than 20 nm and fluorescence enhancement up to 30 times are demonstrated
experimentally. By accounting for the tip shaft and the sample interface in
finite-difference time-domain calculations, we explain why the measured
fluorescence enhancements are higher in the presence of an interface than the
values predicted for a homogeneous environment.Comment: 10 pages, 3 figures. accepted for publication in Nano Letter
Resonant decay of gravitational waves into dark energy
We study the decay of gravitational waves into dark energy fluctuations \u3c0, taking into account the large occupation numbers. We describe dark energy using the effective field theory approach, in the context of generalized scalar-tensor theories. When the m33 (cubic Horndeski) and 3c m42 (beyond Horndeski) operators are present, the gravitational wave acts as a classical background for \u3c0 and modifies its dynamics. In particular, \u3c0 fluctuations are described by a Mathieu equation and feature instability bands that grow exponentially. Focusing on the regime of small gravitational-wave amplitude, corresponding to narrow resonance, we calculate analytically the produced \u3c0, its energy and the change of the gravitational-wave signal. The resonance is affected by \u3c0 self-interactions in a way that we cannot describe analytically. This effect is very relevant for the operator m33 and it limits the instability. In the case of the 3c m42 operator self-interactions can be neglected, at least in some regimes. The modification of the gravitational-wave signal is observable for 3
7 10-20 64 \u3b1H 64 10-17 with a LIGO/Virgo-like interferometer and for 10-16 64 \u3b1H 64 10-10 with a LISA-like one
- …