2,230 research outputs found

    Transcriptome analysis of the oil-rich seed of the bioenergy crop Jatropha curcas L

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To date, oil-rich plants are the main source of biodiesel products. Because concerns have been voiced about the impact of oil-crop cultivation on the price of food commodities, the interest in oil plants not used for food production and amenable to cultivation on non-agricultural land has soared. As a non-food, drought-resistant and oil-rich crop, <it>Jatropha curcas </it>L. fulfils many of the requirements for biofuel production.</p> <p>Results</p> <p>We have generated 13,249 expressed sequence tags (ESTs) from developing and germinating <it>Jatropha </it>seeds. This strategy allowed us to detect most known genes related to lipid synthesis and degradation. We have also identified ESTs coding for proteins that may be involved in the toxicity of <it>Jatropha </it>seeds. Another unexpected finding is the high number of ESTs containing transposable element-related sequences in the developing seed library (800) when contrasted with those found in the germinating seed library (80).</p> <p>Conclusions</p> <p>The sequences generated in this work represent a considerable increase in the number of sequences deposited in public databases. These results can be used to produce genetically improved varieties of <it>Jatropha </it>with increased oil yields, different oil compositions and better agronomic characteristics.</p

    A time-dependent atomistic reconstruction of severe irradiation damage and associated property changes in nuclear graphite

    Get PDF
    Detailed knowledge regarding the nature of and mechanisms causing neutron irradiation damage in graphite remains a scientific and technological challenge, particularly at high irradiation doses. Using electrons as a surrogate for neutron irradiation, we develop a time-dependent atomistic reconstruction strategy fed by a time series of high-resolution transmission electron microscopy (HRTEM) images, to monitor damage propagation in a graphite grain up to a dose of about one displacement per atom (i.e. well beyond the conventional irradiation simulations based on molecular dynamics). The reduction in crystalline order and the development of interlayer bonding observed in the models with increasing irradiation time induce significant modifications of the elastic constants and thermal conductivity. Homogenizing these properties to the case of isotropic polycrystalline graphite we are able to reproduce the increase in Young’s modulus and decrease in thermal conductivity observed experimentally for reactor graphites with increasing dose. Further validation of the models is provided via a comparison of simulated and experimental data from irradiated material such as: HRTEM images, carbon K-edge electron energy loss spectra, dose rate and stored energies

    The pharmacological regulation of cellular mitophagy

    Get PDF
    Small molecules are pharmacological tools of considerable value for dissecting complex biological processes and identifying potential therapeutic interventions. Recently, the cellular quality-control process of mitophagy has attracted considerable research interest; however, the limited availability of suitable chemical probes has restricted our understanding of the molecular mechanisms involved. Current approaches to initiate mitophagy include acute dissipation of the mitochondrial membrane potential (ΔΨm) by mitochondrial uncouplers (for example, FCCP/CCCP) and the use of antimycin A and oligomycin to impair respiration. Both approaches impair mitochondrial homeostasis and therefore limit the scope for dissection of subtle, bioenergy-related regulatory phenomena. Recently, novel mitophagy activators acting independently of the respiration collapse have been reported, offering new opportunities to understand the process and potential for therapeutic exploitation. We have summarized the current status of mitophagy modulators and analyzed the available chemical tools, commenting on their advantages, limitations and current applications

    Control of Visceral Leishmaniasis in Latin America—A Systematic Review

    Get PDF
    Visceral leishmaniasis is a vector-borne disease characterized by fever, spleen and liver enlargement, and low blood cell counts. In the Americas VL is zoonotic, with domestic dogs as main animal reservoirs, and is caused by the intracellular parasite Leishmania infantum (syn. Leishmania chagasi). Humans acquire the infection through the bite of an infected sand fly. The disease is potentially lethal if untreated. VL is reported from Mexico to Argentina, with recent trends showing a rapid spread in Brazil. Control measures directed against the canine reservoir and insect vectors have been unsuccessful, and early detection and treatment of human cases remains as the most important strategy to reduce case fatality. Well-designed studies evaluating diagnosis, treatment, and prevention/control interventions are scarce. The available scientific evidence reasonably supports the use of rapid diagnostic tests for the diagnosis of human disease. Properly designed randomized controlled trials following good clinical practices are needed to inform drug policy. Routine control strategies against the canine reservoirs and insect vectors are based on weak and conflicting evidence, and vector control strategies and vaccine development should constitute research priorities
    corecore