36 research outputs found

    SARS-CoV-2 enzyme-linked immunosorbent assays as proxies for plaque reduction neutralisation tests

    Get PDF
    Severe acute respiratory coronavirus 2 (SARS-CoV-2) has spread globally since its emergence in 2019. Most SARS-CoV-2 infections generate immune responses leading to rising levels of immunoglobulins (Ig) M, A and G which can be detected using diagnostic tests including enzyme-linked immunosorbent assays (ELISA). Whilst implying previous SARS-CoV-2 infection, the detection of Ig by ELISA does not guarantee the presence of neutralising antibodies (NAb) that can prevent the virus infecting cells. Plaque reduction neutralisation tests (PRNT) detect NAb, but are not amenable to mass testing as they take several days and require use of SARS-CoV-2 in high biocontainment laboratories. We evaluated the ability of IgG and IgM ELISAs targeting SARS-CoV-2 spike subunit 1 receptor binding domain (S1-RBD), and spike subunit 2 (S2) and nucleocapsid protein (NP), at predicting the presence and magnitude of NAb determined by PRNT. IgG S2 + NP ELISA was 96.8% [95% CI 83.8–99.9] sensitive and 88.9% [95% CI 51.8–99.7] specific at predicting the presence of NAbs (PRNT80 > 1:40). IgG and IgM S1-RBD ELISAs correlated with PRNT titre, with higher ELISA results increasing the likelihood of a robust neutralising response. The IgM S1-RBD assay can be used as a rapid, high throughput test to approximate the magnitude of NAb titre

    Mono- versus polydrug abuse patterns among publicly funded clients

    Get PDF
    To examine patterns of mono- versus polydrug abuse, data were obtained from intake records of 69,891 admissions to publicly funded treatment programs in Tennessee between 1998 and 2004. While descriptive statistics were employed to report frequency and patterns of mono- and polydrug abuse by demographic variables and by study years, bivariate logistic regression was applied to assess the probability of being a mono- or polydrug abuser for a number of demographic variables. The researchers found that during the study period 51.3% of admissions reported monodrug abuse and 48.7% reported polydrug abuse. Alcohol, cocaine, and marijuana were the most commonly abused substances, both alone and in combination. Odds ratio favored polydrug abuse for all but one drug category–other drugs. Gender did not affect drug abuse patterns; however, admissions for African Americans and those living in urban areas exhibited higher probabilities of polydrug abuse. Age group also appeared to affect drug abuse patterns, with higher odds of monodrug abuse among minors and adults over 45 years old. The discernable prevalence of polydrug abuse suggests a need for developing effective prevention strategies and treatment plans specific to polydrug abuse

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC

    Optimal foraging and community structure: implications for a guild of generalist grassland herbivores

    Full text link
    A particular linear programming model is constructed to predict the diets of each of 14 species of generalist herbivores at the National Bison Range, Montana. The herbivores have body masses ranging over seven orders of magnitude and belonging to two major taxa: insects and mammals. The linear programming model has three feeding constraints: digestive capacity, feeding time and energy requirements. A foraging strategy that maximizes daily energy intake agrees very well with the observed diets. Body size appears to be an underlying determinant of the foraging parameters leading to diet selection. Species that possess digestive capacity and feeding time constraints which approach each other in magnitude have the most generalized diets. The degree that the linear programming models change their diet predictions with a given percent change in parameter values (sensitivity) may reflect the observed ability of the species to vary their diets. In particular, the species which show the most diet variability are those whose diets tend to be balanced between monocots and dicots. The community-ecological parameters of herbivore body-size ranges and species number can possibly be related to foraging behavior.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47765/1/442_2004_Article_BF00377109.pd
    corecore