473 research outputs found

    Chronic non-specific low back pain - sub-groups or a single mechanism?

    Get PDF
    Copyright 2008 Wand and O'Connell; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Low back pain is a substantial health problem and has subsequently attracted a considerable amount of research. Clinical trials evaluating the efficacy of a variety of interventions for chronic non-specific low back pain indicate limited effectiveness for most commonly applied interventions and approaches. Discussion: Many clinicians challenge the results of clinical trials as they feel that this lack of effectiveness is at odds with their clinical experience of managing patients with back pain. A common explanation for this discrepancy is the perceived heterogeneity of patients with chronic non-specific low back pain. It is felt that the effects of treatment may be diluted by the application of a single intervention to a complex, heterogeneous group with diverse treatment needs. This argument presupposes that current treatment is effective when applied to the correct patient. An alternative perspective is that the clinical trials are correct and current treatments have limited efficacy. Preoccupation with sub-grouping may stifle engagement with this view and it is important that the sub-grouping paradigm is closely examined. This paper argues that there are numerous problems with the sub-grouping approach and that it may not be an important reason for the disappointing results of clinical trials. We propose instead that current treatment may be ineffective because it has been misdirected. Recent evidence that demonstrates changes within the brain in chronic low back pain sufferers raises the possibility that persistent back pain may be a problem of cortical reorganisation and degeneration. This perspective offers interesting insights into the chronic low back pain experience and suggests alternative models of intervention. Summary: The disappointing results of clinical research are commonly explained by the failure of researchers to adequately attend to sub-grouping of the chronic non-specific low back pain population. Alternatively, current approaches may be ineffective and clinicians and researchers may need to radically rethink the nature of the problem and how it should best be managed

    Cancer cell differentiation heterogeneity and aggressive behavior in solid tumors

    Get PDF
    The differentiation stage of tumors is a central aspect in the histopathological classification of solid malignancies. The differentiation stage is strongly associated with tumor behavior, and generally an immature tumor is more aggressive than the more differentiated counterpart. While this is common knowledge in surgical pathology, the contribution of differentiation-related gene expression and functions to tumor behavior is often overlooked in the experimental, tumor biological setting. The mechanisms by which tumor cell differentiation stages are perturbed or affected are poorly explored but have recently come into focus with the introduction.of the tumor stem cell concept. While developmental biologists view the differentiation as a unidirectional event, pathologists and tumor biologists have introduced the concept of dedifferentiation to explain phenotypic changes occurring in solid tumors. In this review we discuss the impact of the tumor cell differentiation stage as used in surgical pathology. We further discuss knowledge gained from exploring the molecular basis of the differentiation and dedifferentiation processes in neuroblastoma and breast cancer, two tumor forms where the tumor cell differentiation concept is used in the clinical diagnostic work and where the tumor stem cell theory has been applied

    FAK acts as a suppressor of RTK-MAP kinase signalling in Drosophila melanogaster epithelia and human cancer cells

    Get PDF
    Receptor Tyrosine Kinases (RTKs) and Focal Adhesion Kinase (FAK) regulate multiple signalling pathways, including mitogen-activated protein (MAP) kinase pathway. FAK interacts with several RTKs but little is known about how FAK regulates their downstream signalling. Here we investigated how FAK regulates signalling resulting from the overexpression of the RTKs RET and EGFR. FAK suppressed RTKs signalling in Drosophila melanogaster epithelia by impairing MAPK pathway. This regulation was also observed in MDA-MB-231 human breast cancer cells, suggesting it is a conserved phenomenon in humans. Mechanistically, FAK reduced receptor recycling into the plasma membrane, which resulted in lower MAPK activation. Conversely, increasing the membrane pool of the receptor increased MAPK pathway signalling. FAK is widely considered as a therapeutic target in cancer biology; however, it also has tumour suppressor properties in some contexts. Therefore, the FAK-mediated negative regulation of RTK/MAPK signalling described here may have potential implications in the designing of therapy strategies for RTK-driven tumours

    Hereditary alpha-1-antitrypsin deficiency and its clinical consequences

    Get PDF
    Alpha-1-antitrypsin deficiency (AATD) is a genetic disorder that manifests as pulmonary emphysema, liver cirrhosis and, rarely, as the skin disease panniculitis, and is characterized by low serum levels of AAT, the main protease inhibitor (PI) in human serum. The prevalence in Western Europe and in the USA is estimated at approximately 1 in 2,500 and 1 : 5,000 newborns, and is highly dependent on the Scandinavian descent within the population. The most common deficiency alleles in North Europe are PI Z and PI S, and the majority of individuals with severe AATD are PI type ZZ. The clinical manifestations may widely vary between patients, ranging from asymptomatic in some to fatal liver or lung disease in others. Type ZZ and SZ AATD are risk factors for the development of respiratory symptoms (dyspnoea, coughing), early onset emphysema, and airflow obstruction early in adult life. Environmental factors such as cigarette smoking, and dust exposure are additional risk factors and have been linked to an accelerated progression of this condition. Type ZZ AATD may also lead to the development of acute or chronic liver disease in childhood or adulthood: prolonged jaundice after birth with conjugated hyperbilirubinemia and abnormal liver enzymes are characteristic clinical signs. Cirrhotic liver failure may occur around age 50. In very rare cases, necrotizing panniculitis and secondary vasculitis may occur. AATD is caused by mutations in the SERPINA1 gene encoding AAT, and is inherited as an autosomal recessive trait. The diagnosis can be established by detection of low serum levels of AAT and isoelectric focusing. Differential diagnoses should exclude bleeding disorders or jaundice, viral infection, hemochromatosis, Wilson's disease and autoimmune hepatitis. For treatment of lung disease, intravenous alpha-1-antitrypsin augmentation therapy, annual flu vaccination and a pneumococcal vaccine every 5 years are recommended. Relief of breathlessness may be obtained with long-acting bronchodilators and inhaled corticosteroids. The end-stage liver and lung disease can be treated by organ transplantation. In AATD patients with cirrhosis, prognosis is generally grave

    Enhancing Specific Disruption of Intracellular Protein Complexes by Hydrocarbon Stapled Peptides Using Lipid Based Delivery

    Get PDF
    Linear peptides can mimic and disrupt protein-protein interactions involved in critical cell signaling pathways. Such peptides however are usually protease sensitive and unable to engage with intracellular targets due to lack of membrane permeability. Peptide stapling has been proposed to circumvent these limitations but recent data has suggested that this method does not universally solve the problem of cell entry and can lead to molecules with off target cell lytic properties. To address these issues a library of stapled peptides was synthesized and screened to identify compounds that bound Mdm2 and activated cellular p53. A lead peptide was identified that activated intracellular p53 with negligible nonspecific cytotoxicity, however it still bound serum avidly and only showed a marginal improvement in cellular potency. These hurdles were overcome by successfully identifying a pyridinium-based cationic lipid formulation, which significantly improved the activity of the stapled peptide in a p53 reporter cell line, principally through increased vesicular escape. These studies under score that stapled peptides, which are cell permeable and target specific, can be identified with rigorous experimental design and that these properties can be improved through use with lipid based formulations. This work should facilitate the clinical translation of stapled peptides

    Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes.

    Get PDF
    A considerable body of research indicates that mammary gland branching morphogenesis is dependent, in part, on the extracellular matrix (ECM), ECM-receptors, such as integrins and other ECM receptors, and ECM-degrading enzymes, including matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). There is some evidence that these ECM cues affect one or more of the following processes: cell survival, polarity, proliferation, differentiation, adhesion, and migration. Both three-dimensional culture models and genetic manipulations of the mouse mammary gland have been used to study the signaling pathways that affect these processes. However, the precise mechanisms of ECM-directed mammary morphogenesis are not well understood. Mammary morphogenesis involves epithelial 'invasion' of adipose tissue, a process akin to invasion by breast cancer cells, although the former is a highly regulated developmental process. How these morphogenic pathways are integrated in the normal gland and how they become dysregulated and subverted in the progression of breast cancer also remain largely unanswered questions

    Sumoylation of Hypoxia-Inducible Factor-1α Ameliorates Failure of Brain Stem Cardiovascular Regulation in Experimental Brain Death

    Get PDF
    One aspect of brain death is cardiovascular deregulation because asystole invariably occurs shortly after its diagnosis. A suitable neural substrate for mechanistic delineation of this aspect of brain death resides in the rostral ventrolateral medulla (RVLM). RVLM is the origin of a life-and-death signal that our laboratory detected from blood pressure of comatose patients that disappears before brain death ensues. At the same time, transcriptional upregulation of heme oxygenase-1 in RVLM by hypoxia-inducible factor-1α (HIF-1α) plays a pro-life role in experimental brain death, and HIF-1α is subject to sumoylation activated by transient cerebral ischemia. It follows that sumoylation of HIF-1α in RVLM in response to hypoxia may play a modulatory role on brain stem cardiovascular regulation during experimental brain death.A clinically relevant animal model that employed mevinphos as the experimental insult in Sprague-Dawley rat was used. Biochemical changes in RVLM during distinct phenotypes in systemic arterial pressure spectrum that reflect maintained or defunct brain stem cardiovascular regulation were studied. Western blot analysis, EMSA, ELISA, confocal microscopy and immunoprecipitation demonstrated that drastic tissue hypoxia, elevated levels of proteins conjugated by small ubiquitin-related modifier-1 (SUMO-1), Ubc9 (the only known conjugating enzyme for the sumoylation pathway) or HIF-1α, augmented sumoylation of HIF-1α, nucleus-bound translocation and enhanced transcriptional activity of HIF-1α in RVLM neurons took place preferentially during the pro-life phase of experimental brain death. Furthermore, loss-of-function manipulations by immunoneutralization of SUMO-1, Ubc9 or HIF-1α in RVLM blunted the upregulated nitric oxide synthase I/protein kinase G signaling cascade, which sustains the brain stem cardiovascular regulatory machinery during the pro-life phase.We conclude that sumoylation of HIF-1α in RVLM ameliorates brain stem cardiovascular regulatory failure during experimental brain death via upregulation of nitric oxide synthase I/protein kinase G signaling. This information should offer new therapeutic initiatives against this fatal eventuality

    AmrZ is a major determinant of c-di-GMP levels in Pseudomonas fluorescens F113

    Get PDF
    The transcriptional regulator AmrZ is a global regulatory protein conserved within the pseudomonads. AmrZ can act both as a positive and a negative regulator of gene expression, controlling many genes implicated in environmental adaption. Regulated traits include motility, iron homeostasis, exopolysaccharides production and the ability to form biofilms. In Pseudomonas fluorescens F113, an amrZ mutant presents a pleiotropic phenotype, showing increased swimming motility, decreased biofilm formation and very limited ability for competitive colonization of rhizosphere, its natural habitat. It also shows different colony morphology and binding of the dye Congo Red. The amrZ mutant presents severely reduced levels of the messenger molecule cyclic-di-GMP (c-di-GMP), which is consistent with the motility and biofilm formation phenotypes. Most of the genes encoding proteins with diguanylate cyclase (DGCs) or phosphodiesterase (PDEs) domains, implicated in c-di-GMP turnover in this bacterium, appear to be regulated by AmrZ. Phenotypic analysis of eight mutants in genes shown to be directly regulated by AmrZ and encoding c-di-GMP related enzymes, showed that seven of them were altered in motility and/or biofilm formation. The results presented here show that in P. fluorescens, AmrZ determines c-di-GMP levels through the regulation of a complex network of genes encoding DGCs and PDEs

    The effect Akt2 deletion on tumor development in Pten+/− mice

    Get PDF
    The serine/threonine kinase Akt is frequently activated in human cancers and is considered an attractive therapeutic target. However, the relative contributions of the different Akt isoforms to tumorigenesis, and the effect of their deficiencies on cancer development are not well understood. We had previously shown that Akt1 deficiency is sufficient to markedly reduce the incidence of tumors in Pten+/− mice. Particularly, Akt1 deficiency inhibits endometrial carcinoma and prostate neoplasia in Pten+/− mice. Here, we analyzed the effect of Akt2 deficiency on the incidence of tumors in Pten+/− mice. Relative to Akt1, Akt2 deficiency had little-to-no effect on the incidence of prostate neoplasia, endometrial carcinoma, intestinal polyps and adrenal lesions in Pten+/− mice. However, Akt2 deficiency significantly decreased the incidence of thyroid tumors in Pten+/−, which correlates with the relatively high level of Akt2 expression in the thyroid. Thus, unlike Akt1 deletion, Akt2 deletion is not sufficient to markedly inhibit tumorigenesis in Pten+/− mice in most tested tissues. The relatively small effect of Akt2 deletion on the inhibition of tumorigenesis in Pten+/− mice could be explained, in part, by an insufficient decrease in total Akt activity, due to the relatively lower Akt2 versus Akt1 expression, and relatively high blood insulin levels in Pten+/−Akt2−/− mice. The relatively high blood insulin levels in Pten+/−Akt2−/− mice may elevate the activity of Akt1, and possibly Akt3, thus, limiting the reduction of total Akt activity and preventing this activity from dropping to a threshold level required to inhibit tumorigenesis
    corecore