21 research outputs found
U-Pb memory behavior in Chicxulub's peak ring - Applying U-Pb depth profiling to shocked zircon
The zircon U-Pb system is one of the most robust geochronometers, but during an impact event individual crystals can be affected differently by the passage of the shock wave and impact generated heat. Unraveling the potentially complex thermal history recorded by zircon crystals that experienced variable levels of shock and heating, as well as additioanl pre- and post-impact thermal events, has been difficult using classical geochronological methods. The existing high-precision 40Ar/39Ar age constraints for the K-Pg Chicxulub event, and the previous U-Pb dating of the basement rocks from the impact site, make Chicxulub an ideal location to study impact-induced effects on the zircon U-Pb systematics and to evaluate potential 'memory effects' of pre-impact U-Pb signatures preserved within those individual zircon crystals. Recent IODP-ICDP drilling of the Chicxulub impact structure recovered 580 m of uplifted shocked granitoid and 130 m of melt and suevite, providing an unprecedented opportunity to study zircon crystals subjected to a range of shock pressures, thermal, and deformational histories. Zircon morphologies were classified using scanning electron microscopy (SEM) imaging and then samples were depth profiled using laser ablation inductively coupled plasma mass-spectrometry (LA-ICP-MS) to document the range of preserved age domains from rim-to-center within individual crystals. The results show U-Pb ages range from 66 to 472 Ma, which are consistent with both inherited Carboniferous and Late Paleozoic basement ages as well as Pb loss ages in response to the K-Pg impact event. While the bulk of the zircon grains preserve Paleozoic ages, high U (metamict) zones within fractured zircon crystals exhibited an age within uncertainty (66 ± 6.2 Ma) of the impact age (66.038 ± 0.049 Ma), indicating that inherited intragrain U-Pb kinetics and/or hydrothermal fluid flow may have controlled age resetting those zircon crystals rather than impact-induced shock and heating alone. Moreover, the calculated α-decay doses suggest that the zircon crystals experienced Stage 1 or early Stage 2 radiation damage accumulation. Therefore, we suggest that the lowered crystal annealing temperature in crystals that previoulsy experienced radiation damage make the zircon U-Pb clock either more susceptible to the relatively short heat pulse of the impact event, the moderate pressure and temperature conditions in the peak ring, and/or to hot-fluid flow in the long-lasting post impact hydrothermal system
Subduction initiation and ophiolite crust: new insights from IODP drilling
International Ocean Discovery Program (IODP) Expedition 352 recovered a high-fidelity record of volcanism related to subduction initiation in the Bonin fore-arc. Two sites (U1440 and U1441) located in deep water nearer to the trench recovered basalts and related rocks; two sites (U1439 and U1442) located in shallower water further from the trench recovered boninites and related rocks. Drilling in both areas ended in dolerites inferred to be sheeted intrusive rocks. The basalts apparently erupted immediately after subduction initiation and have compositions similar to those of the most depleted basalts generated by rapid sea-floor spreading at mid-ocean ridges, with little or no slab input. Subsequent melting to generate boninites involved more depleted mantle and hotter and deeper subducted components as subduction progressed and volcanism migrated away from the trench. This volcanic sequence is akin to that recorded by many ophiolites, supporting a direct link between subduction initiation, fore-arc spreading, and ophiolite genesis
Dehydration of subducting slow-spread oceanic lithosphere in the Lesser Antilles
Subducting slabs carry water into the mantle and are a major gateway in the global geochemical water cycle. Fluid transport and release can be constrained with seismological data. Here we use joint active-source/local-earthquake seismic tomography to derive unprecedented constraints on multi-stage fluid release from subducting slow-spread oceanic lithosphere. We image the low P-wave velocity crustal layer on the slab top and show that it disappears beneath 60–100 km depth, marking the depth of dehydration metamorphism and eclogitization. Clustering of seismicity at 120–160 km depth suggests that the slab’s mantle dehydrates beneath the volcanic arc, and may be the main source of fluids triggering arc magma generation. Lateral variations in seismic properties on the slab surface suggest that serpentinized peridotite exhumed in tectonized slow-spread crust near fracture zones may increase water transport to sub-arc depths. This results in heterogeneous water release and directly impacts earthquakes generation and mantle wedge dynamics
Importance of pre-impact crustal structure for the asymmetry of the Chicxulub impact crater
Impact craters are observed on the surfaces of all rocky planets and satellites in our Solar System(1); some impacts on Earth, such as the Cretaceous/Tertiary one that formed the Chicxulub impact crater(2,3), have been implicated in mass extinctions(4-12). The direction and angle of the impact - or its trajectory - is an important determinant of the severity of the consequent environmental damage, both in the downrange direction ( direction bolide travels) and in the amount of material that enters the plume of material vaporized on impact(2,13-15). The trajectory of the Chicxulub impact has previously been inferred largely from asymmetries in the gravity anomalies over the crater(2,3). Here, we use seismic data to image the Chicxulub crater in three dimensions and demonstrate that the strong asymmetry of its subsurface correlates with significant pre-existing undulations on the end-Cretaceous continental shelf that was the site of this impact. These results suggest that for rocky planets, geological and geomorphological heterogeneities at the target site may play an important role in determining impact crater structure, in addition to impact trajectories. In those cases where heterogeneous targets are inferred, deciphering impact trajectories from final crater geometries alone may be difficult and require further data such as the distribution of ejecta
Simultaneous rupture on conjugate faults during the 2018 Anchorage, Alaska, intraslab earthquake (MW 7.1) inverted from strong-motion waveforms
New shock microstructures in titanite (CaTiSiO5) from the peak ring of the Chicxulub impact structure, Mexico
Accessory mineral geochronometers such as apatite, baddeleyite, monazite, xenotime and zircon are increasingly being recognized for their ability to preserve diagnostic microstructural evidence of hypervelocity-impact processes. To date, little is known about the response of titanite to shock metamorphism, even though it is a widespread accessory phase and a U–Pb geochronometer. Here we report two new mechanical twin modes in titanite within shocked granitoid from the Chicxulub impact structure, Mexico. Titanite grains in the newly acquired core from the International Ocean Discovery Program Hole M0077A preserve multiple sets of polysynthetic twins, most commonly with composition planes (K1) = ~ {1¯11}
{
1
¯
11
}
, and shear direction (η1) = , and less commonly with the mode K1 = {130}, η1 = ~ . In some grains, {130} deformation bands have formed concurrently with the deformation twins, indicating dislocation slip with Burgers vector b = can be active during impact metamorphism. Titanite twins in the modes described here have not been reported from endogenically deformed rocks; we, therefore, propose this newly identified twin form as a result of shock deformation. Formation conditions of the twins have not been experimentally calibrated, and are here empirically constrained by the presence of planar deformation features in quartz (12 ± 5 and ~ 17 ± 5 GPa) and the absence of shock twins in zircon (< 20 GPa). While the lower threshold of titanite twin formation remains poorly constrained, identification of these twins highlight the utility of titanite as a shock indicator over the pressure range between 12 and 17 GPa. Given the challenges to find diagnostic indicators of shock metamorphism to identify both ancient and recent impact evidence on Earth, microstructural analysis of titanite is here demonstrated to provide a new tool for recognizing impact deformation in rocks where other impact evidence may be erased, altered, or did not manifest due to generally low (< 20 GPa) shock pressure
