170 research outputs found

    c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration.

    Get PDF
    The radical response of peripheral nerves to injury (Wallerian degeneration) is the cornerstone of nerve repair. We show that activation of the transcription factor c-Jun in Schwann cells is a global regulator of Wallerian degeneration. c-Jun governs major aspects of the injury response, determines the expression of trophic factors, adhesion molecules, the formation of regeneration tracks and myelin clearance and controls the distinctive regenerative potential of peripheral nerves. A key function of c-Jun is the activation of a repair program in Schwann cells and the creation of a cell specialized to support regeneration. We show that absence of c-Jun results in the formation of a dysfunctional repair cell, striking failure of functional recovery, and neuronal death. We conclude that a single glial transcription factor is essential for restoration of damaged nerves, acting to control the transdifferentiation of myelin and Remak Schwann cells to dedicated repair cells in damaged tissue

    Increased sinusoidal flow is not the primary stimulus to liver regeneration

    Get PDF
    Background: Hemodynamic changes in the liver remnant following partial hepatectomy (PHx) have been suggested to be a primary stimulus in triggering liver regeneration. We hypothesized that it is the increased sinusoidal flow per se and hence the shear-stress stimulus on the endothelial surface within the liver remnant which is the main stimulus to regeneration. In order to test this hypothesis we wanted to increase the sinusoidal flow without performing a concomitant liver resection. Accordingly, we constructed an aorto-portal shunt to the left portal vein branch creating a standardized four-fold increase in flow to segments II, III and IV. The impact of this manipulation was studied in both an acute model (6 animals, 9 hours) using a global porcine cDNA microarray chip and in a chronic model observing weight and histological changes (7 animals, 3 weeks). Results: Gene expression profiling from the shunted segments does not suggest that increased sinusoidal flow per se results in activation of genes promoting mitosis. Hyperperfusion over three weeks results in the whole liver gaining a supranormal weight of 3.9% of the total body weight (versus the normal 2.5%). Contrary to our hypothesis, the weight gain was observed on the non-shunted side without an increase in sinusoidal flow. Conclusions: An isolated increase in sinusoidal flow does not have the same genetic, microscopic or macroscopic impact on the liver as that seen in the liver remnant after partial hepatectomy, indicating that increased sinusoidal flow may not be a sufficient stimulus in itself for the initiation of liver regeneration

    Transition of care: experiences and preferences of patients across the primary/secondary interface – a qualitative study

    Get PDF
    BACKGROUND: Coordination between care providers of different disciplines is essential to improve the quality of care, in particular for patients with chronic diseases. The way in which general practitioners (GP's) and medical specialists interact has important implications for any healthcare system in which the GP plays the role of gatekeeper to specialist care. Patient experiences and preferences have proven to be increasingly important in discussing healthcare policy. The Dutch government initiated the development of a special website with information for patients on performance indicators of hospitals as well as information on illness or treatment.In the present study we focus on the transition of care at the primary - secondary interface with reference to the impact of patients' ability to make choices about their secondary care providers. The purpose of this study is to (a) explore experiences and preferences of patients regarding the transition between primary and secondary care, (b) study informational resources on illness/treatment desired by patients and (c) determine how information supplied could make it easier for the patient to choose between different options for care (hospital or specialist). METHODS: We conducted a qualitative study using semi-structured focus group interviews among 71 patients referred for various indications in the north and west of The Netherlands. RESULTS: Patients find it important that they do not have to wait, that they are taken seriously, and receive adequate and individually relevant information. A lack of continuity from secondary to primary care was experienced. The patient's desire for free choice of type of care did not arise in any of the focus groups. CONCLUSION: Hospital discharge information needs to be improved. The interval between discharge from specialist care and the report of the specialist to the GP might be a suitable performance indicator in healthcare. Patients want to receive information, tailored to their own situation. The need for information, however, is quite variable. Patients do not feel strongly about self-chosen healthcare, contrary to what administrators presently believe

    A 12-year-old girl with absent radial pulse: arterial thoracic outlet syndrome with subclavian artery aneurysm and thrombosis of the brachial artery

    Full text link
    Brachial arterial occlusion is rare in children and adolescents. Once a traumatic cause is excluded, the differential diagnosis consists of a variety of rare conditions. We report the case of a 12-year-old girl whose presenting symptoms--an absent radial pulse and Raynaud's phenomenon of the right hand--could be easily mistaken for a vasculitis. She was found to have arterial thoracic outlet syndrome with right subclavian artery compression and aneurysm formation caused by an anomalous first rib and consecutive thromboembolic occlusion of the brachial artery. The diagnosis and differential diagnosis of this condition are reviewed

    Network Evolution of Body Plans

    Get PDF
    Segmentation in arthropod embryogenesis represents a well-known example of body plan diversity. Striped patterns of gene expression that lead to the future body segments appear simultaneously or sequentially in long and short germ-band development, respectively. Regulatory genes relevant for stripe formation are evolutionarily conserved among arthropods, therefore the differences in the observed traits are thought to have originated from how the genes are wired. To reveal the basic differences in the network structure, we have numerically evolved hundreds of gene regulatory networks that produce striped patterns of gene expression. By analyzing the topologies of the generated networks, we show that the characteristics of stripe formation in long and short germ-band development are determined by Feed-Forward Loops (FFLs) and negative Feed-Back Loops (FBLs) respectively. Network architectures, gene expression patterns and knockout responses exhibited by the artificially evolved networks agree with those reported in the fly Drosophila melanogaster and the beetle Tribolium castaneum. For other arthropod species, principal network architectures that remain largely unknown are predicted.Comment: 35 pages, 4 figures and 1 tabl

    An Incomplete TCA Cycle Increases Survival of Salmonella Typhimurium during Infection of Resting and Activated Murine Macrophages

    Get PDF
    In comparison to the comprehensive analyses performed on virulence gene expression, regulation and action, the intracellular metabolism of Salmonella during infection is a relatively under-studied area. We investigated the role of the tricarboxylic acid (TCA) cycle in the intracellular replication of Salmonella Typhimurium in resting and activated macrophages, epithelial cells, and during infection of mice.We constructed deletion mutations of 5 TCA cycle genes in S. Typhimurium including gltA, mdh, sdhCDAB, sucAB, and sucCD. We found that the mutants exhibited increased net intracellular replication in resting and activated murine macrophages compared to the wild-type. In contrast, an epithelial cell infection model showed that the S. Typhimurium ΔsucCD and ΔgltA strains had reduced net intracellular replication compared to the wild-type. The glyoxylate shunt was not responsible for the net increased replication of the TCA cycle mutants within resting macrophages. We also confirmed that, in a murine infection model, the S. Typhimurium ΔsucAB and ΔsucCD strains are attenuated for virulence.Our results suggest that disruption of the TCA cycle increases the ability of S. Typhimurium to survive within resting and activated murine macrophages. In contrast, epithelial cells are non-phagocytic cells and unlike macrophages cannot mount an oxidative and nitrosative defence response against pathogens; our results show that in HeLa cells the S. Typhimurium TCA cycle mutant strains show reduced or no change in intracellular levels compared to the wild-type. The attenuation of the S. Typhimurium ΔsucAB and ΔsucCD mutants in mice, compared to their increased net intracellular replication in resting and activated macrophages suggest that Salmonella may encounter environments within the host where a complete TCA cycle is advantageous

    Careers of highly educated self-initiated expatriates : observations from studies among Finnish business professionals

    Get PDF
    This chapter reviews existing literature about the careers of self-initiated expatriates and analyzes the different studies carried out among university level educated Finnish business professionals. A series of studies carried out among members of the Finnish Association of Business School Graduates during the last 15 years was cross-analyzed. The studies are based on three surveys and further interviews among their expatriate members (1999, 2004 and a follow-up study in 2012) also involving SIEs. Therefore, this chapter provide an overview of what we know about the careers of Finnish SIEs and show evidence of (1) their career motives, (2) the role of family considerations in the career decision making of SIEs, (3) the development of career capital and social capital during SIE-experiences, and also (4) longer-term career impacts of SIE-experiences. Based on the literature review and analysis of above mentioned studies we highlight the gaps in in the knowledge about SIEs and suggest areas where further research is needed.fi=vertaisarvioitu|en=peerReviewed

    New resources for functional analysis of omics data for the genus Aspergillus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Detailed and comprehensive genome annotation can be considered a prerequisite for effective analysis and interpretation of omics data. As such, Gene Ontology (GO) annotation has become a well accepted framework for functional annotation. The genus <it>Aspergillus </it>comprises fungal species that are important model organisms, plant and human pathogens as well as industrial workhorses. However, GO annotation based on both computational predictions and extended manual curation has so far only been available for one of its species, namely <it>A. nidulans</it>.</p> <p>Results</p> <p>Based on protein homology, we mapped 97% of the 3,498 GO annotated <it>A. nidulans </it>genes to at least one of seven other <it>Aspergillus </it>species: <it>A. niger</it>, <it>A. fumigatus</it>, <it>A. flavus</it>, <it>A. clavatus</it>, <it>A. terreus</it>, <it>A. oryzae </it>and <it>Neosartorya fischeri</it>. GO annotation files compatible with diverse publicly available tools have been generated and deposited online. To further improve their accessibility, we developed a web application for GO enrichment analysis named FetGOat and integrated GO annotations for all <it>Aspergillus </it>species with public genome sequences. Both the annotation files and the web application FetGOat are accessible via the Broad Institute's website (<url>http://www.broadinstitute.org/fetgoat/index.html</url>). To demonstrate the value of those new resources for functional analysis of omics data for the genus <it>Aspergillus</it>, we performed two case studies analyzing microarray data recently published for <it>A. nidulans</it>, <it>A. niger </it>and <it>A. oryzae</it>.</p> <p>Conclusions</p> <p>We mapped <it>A. nidulans </it>GO annotation to seven other <it>Aspergilli</it>. By depositing the newly mapped GO annotation online as well as integrating it into the web tool FetGOat, we provide new, valuable and easily accessible resources for omics data analysis and interpretation for the genus <it>Aspergillus</it>. Furthermore, we have given a general example of how a well annotated genome can help improving GO annotation of related species to subsequently facilitate the interpretation of omics data.</p

    Influence of ARHGEF3 and RHOA Knockdown on ACTA2 and Other Genes in Osteoblasts and Osteoclasts

    Get PDF
    Osteoporosis is a common bone disease that has a strong genetic component. Genome-wide linkage studies have identified the chromosomal region 3p14-p22 as a quantitative trait locus for bone mineral density (BMD). We have previously identified associations between variation in two related genes located in 3p14-p22, ARHGEF3 and RHOA, and BMD in women. In this study we performed knockdown of these genes using small interfering RNA (siRNA) in human osteoblast-like and osteoclast-like cells in culture, with subsequent microarray analysis to identify genes differentially regulated from a list of 264 candidate genes. Validation of selected findings was then carried out in additional human cell lines/cultures using quantitative real-time PCR (qRT-PCR). The qRT-PCR results showed significant down-regulation of the ACTA2 gene, encoding the cytoskeletal protein alpha 2 actin, in response to RHOA knockdown in both osteoblast-like (P<0.001) and osteoclast-like cells (P = 0.002). RHOA knockdown also caused up-regulation of the PTH1R gene, encoding the parathyroid hormone 1 receptor, in Saos-2 osteoblast-like cells (P<0.001). Other findings included down-regulation of the TNFRSF11B gene, encoding osteoprotegerin, in response to ARHGEF3 knockdown in the Saos-2 and hFOB 1.19 osteoblast-like cells (P = 0.003– 0.02), and down-regulation of ARHGDIA, encoding the Rho GDP dissociation inhibitor alpha, in response to RHOA knockdown in osteoclast-like cells (P<0.001). These studies identify ARHGEF3 and RHOA as potential regulators of a number of genes in bone cells, including TNFRSF11B, ARHGDIA, PTH1R and ACTA2, with influences on the latter evident in both osteoblast-like and osteoclast-like cells. This adds further evidence to previous studies suggesting a role for the ARHGEF3 and RHOA genes in bone metabolism
    corecore