69 research outputs found
Quantitative techniques in 18FDG PET scanning in oncology
The clinical applications of 18F-fluoro-2-deoxyglucose (18FDG) positron emission tomography (PET) in oncology are becoming established. While simple static scanning techniques are used for the majority of routine clinical examinations, increasing use of PET in clinical trials to monitor treatment response with 18FDG and novel tracers reflecting different pharmacodynamic end points, often necessitates a more complex and quantitative analysis of radiopharmaceutical kinetics. A wide range of PET analysis techniques exist, ranging from simple visual analysis and semiquantitative methods to full dynamic studies with kinetic analysis. These methods are discussed, focusing particularly on the available methodologies that can be utilised in clinical trials
Current measures of metabolic heterogeneity within cervical cancer do not predict disease outcome
<p>Abstract</p> <p>Background</p> <p>A previous study evaluated the intra-tumoral heterogeneity observed in the uptake of F-18 fluorodeoxyglucose (FDG) in pre-treatment positron emission tomography (PET) scans of cancers of the uterine cervix as an indicator of disease outcome. This was done via a novel statistic which ostensibly measured the spatial variations in intra-tumoral metabolic activity. In this work, we argue that statistic is intrinsically <it>non</it>-spatial, and that the apparent delineation between unsuccessfully- and successfully-treated patient groups via that statistic is spurious.</p> <p>Methods</p> <p>We first offer a straightforward mathematical demonstration of our argument. Next, we recapitulate an assiduous re-analysis of the originally published data which was derived from FDG-PET imagery. Finally, we present the results of a principal component analysis of FDG-PET images similar to those previously analyzed.</p> <p>Results</p> <p>We find that the previously published measure of intra-tumoral heterogeneity is intrinsically non-spatial, and actually is only a surrogate for tumor volume. We also find that an optimized linear combination of more canonical heterogeneity quantifiers does not predict disease outcome.</p> <p>Conclusions</p> <p>Current measures of intra-tumoral metabolic activity are not predictive of disease outcome as has been claimed previously. The implications of this finding are: clinical categorization of patients based upon these statistics is invalid; more sophisticated, and perhaps innately-geometric, quantifications of metabolic activity are required for predicting disease outcome.</p
Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer
INTRODUCTION
Breast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice.
METHODS
More than 100 internationally recognised specialist breast cancer scientists, clinicians and healthcare professionals collaborated to address nine thematic areas: genetics, epigenetics and epidemiology; molecular pathology and cell biology; hormonal influences and endocrine therapy; imaging, detection and screening; current/novel therapies and biomarkers; drug resistance; metastasis, angiogenesis, circulating tumour cells, cancer 'stem' cells; risk and prevention; living with and managing breast cancer and its treatment. The groups developed summary papers through an iterative process which, following further appraisal from experts and patients, were melded into this summary account.
RESULTS
The 10 major gaps identified were: (1) understanding the functions and contextual interactions of genetic and epigenetic changes in normal breast development and during malignant transformation; (2) how to implement sustainable lifestyle changes (diet, exercise and weight) and chemopreventive strategies; (3) the need for tailored screening approaches including clinically actionable tests; (4) enhancing knowledge of molecular drivers behind breast cancer subtypes, progression and metastasis; (5) understanding the molecular mechanisms of tumour heterogeneity, dormancy, de novo or acquired resistance and how to target key nodes in these dynamic processes; (6) developing validated markers for chemosensitivity and radiosensitivity; (7) understanding the optimal duration, sequencing and rational combinations of treatment for improved personalised therapy; (8) validating multimodality imaging biomarkers for minimally invasive diagnosis and monitoring of responses in primary and metastatic disease; (9) developing interventions and support to improve the survivorship experience; (10) a continuing need for clinical material for translational research derived from normal breast, blood, primary, relapsed, metastatic and drug-resistant cancers with expert bioinformatics support to maximise its utility. The proposed infrastructural enablers include enhanced resources to support clinically relevant in vitro and in vivo tumour models; improved access to appropriate, fully annotated clinical samples; extended biomarker discovery, validation and standardisation; and facilitated cross-discipline working.
CONCLUSIONS
With resources to conduct further high-quality targeted research focusing on the gaps identified, increased knowledge translating into improved clinical care should be achievable within five years
Molecular imaging of hypoxia with radiolabelled agents
Tissue hypoxia results from an inadequate supply of oxygen (O2) that compromises biological functions. Structural and functional abnormalities of the tumour vasculature together with altered diffusion conditions inside the tumour seem to be the main causes of tumour hypoxia. Evidence from experimental and clinical studies points to a role for tumour hypoxia in tumour propagation, resistance to therapy and malignant progression. This has led to the development of assays for the detection of hypoxia in patients in order to predict outcome and identify patients with a worse prognosis and/or patients that would benefit from appropriate treatments. A variety of invasive and non-invasive approaches have been developed to measure tumour oxygenation including oxygen-sensitive electrodes and hypoxia marker techniques using various labels that can be detected by different methods such as positron emission tomography (PET), single photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), autoradiography and immunohistochemistry. This review aims to give a detailed overview of non-invasive molecular imaging modalities with radiolabelled PET and SPECT tracers that are available to measure tumour hypoxia
- …