1,065 research outputs found

    Enrichment analysis of Alu elements with different spatial chromatin proximity in the human genome

    Get PDF
    Transposable elements (TEs) have no longer been totally considered as “junk DNA” for quite a time since the continual discoveries of their multifunctional roles in eukaryote genomes. As one of the most important and abundant TEs that still active in human genome, Alu, a SINE family, has demonstrated its indispensable regulatory functions at sequence level, but its spatial roles are still unclear. Technologies based on 3C(chromosomeconformation capture) have revealed the mysterious three-dimensional structure of chromatin, and make it possible to study the distal chromatin interaction in the genome. To find the role TE playing in distal regulation in human genome, we compiled the new released Hi-C data, TE annotation, histone marker annotations, and the genome-wide methylation data to operate correlation analysis, and found that the density of Alu elements showed a strong positive correlation with the level of chromatin interactions (hESC: r=0.9, P<2.2×1016; IMR90 fibroblasts: r = 0.94, P < 2.2 × 1016) and also have a significant positive correlation withsomeremote functional DNA elements like enhancers and promoters (Enhancer: hESC: r=0.997, P=2.3×10−4; IMR90: r=0.934, P=2×10−2; Promoter: hESC: r = 0.995, P = 3.8 × 10−4; IMR90: r = 0.996, P = 3.2 × 10−4). Further investigation involving GC content and methylation status showed the GC content of Alu covered sequences shared a similar pattern with that of the overall sequence, suggesting that Alu elements also function as the GC nucleotide and CpG site provider. In all, our results suggest that the Alu elements may act as an alternative parameter to evaluate the Hi-C data, which is confirmed by the correlation analysis of Alu elements and histone markers. Moreover, the GC-rich Alu sequence can bring high GC content and methylation flexibility to the regions with more distal chromatin contact, regulating the transcription of tissue-specific genes

    Porphyromonas gingivalis suppresses adaptive immunity in periodontitis, atherosclerosis and Alzheimer’s disease

    Get PDF
    Porphyromonas gingivalis, a keystone pathogen in chronic periodontitis, has been found to associate with remote body organ inflammatory pathologies including atherosclerosis and Alzheimer’s disease (AD). Although P. gingivalis has a plethora of virulence factors, much of its pathogenicity is surprisingly related to the overall immunosuppression of the host. This review focuses on P. gingivalis aiding suppression of the host’s adaptive immune system involving manipulation of cellular immunological responses specifically T- and B-cells in periodontitis and related conditions. In periodontitis this bacterium inhibits the synthesis of IL-2 and increases humoral responses. This reduces inflammatory responses related to T- and B-cell activation, and subsequent IFN-ɤ secretion by a subset of T cells. The T cells further suppresses upregulation of programmed cell death-1 (PD-1)-receptor on CD+-cells and its ligand PD-L1 on CD11b+- subset of T-cells. IL-2 down-regulates immune response-regulated genes, induces a cytokine pattern in which the Th17 lineage is favored thereby modulating the Th17/ T-regulatory cell (Treg) imbalance. The suppression of IFN-ɤ stimulated release of interferon-inducible protein-10 (IP-10) chemokine ligands [ITAC (CXCL11) and Mig (CXCL9)] by P. gingivalis capsular serotypes, triggers distinct T-cell responses, and contributes to local immune evasion by release of its outer membrane vesicles. In atherosclerosis P. gingivalis reduces Tregs and transforming growth factor beta-1 (TGF-1) and causes imbalance in the Th17 lineage of the Treg population. In Alzheimer’s disease P. gingivalis may affect the blood-brain barrier permeability, and inhibit local IFN-ɤ response by preventing entry of immune cells into the brain. The scarcity of adaptive immune cells in Alzheimer’s disease neuropathology implies P. gingivalis infection of the brain likely causes impaired clearance of insoluble amyloid and induces immunosuppression. By the effective manipulation of the armory of adaptive immune suppression through a plethora of virulence factors P. gingivalis may act as a keystone organism in periodontitis and in related systemic diseases and other remote body inflammatory pathologies

    Knowledge, attitudes and practices towards pandemic influenza among cases, close contacts, and healthcare workers in tropical Singapore: a cross-sectional survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Effective influenza pandemic management requires understanding of the factors influencing behavioral changes. We aim to determine the differences in knowledge, attitudes and practices in various different cohorts and explore the pertinent factors that influenced behavior in tropical Singapore.</p> <p>Methods</p> <p>We performed a cross-sectional knowledge, attitudes and practices survey in the Singapore military from mid-August to early-October 2009, among 3054 personnel in four exposure groups - laboratory-confirmed H1N1-2009 cases, close contacts of cases, healthcare workers, and general personnel.</p> <p>Results</p> <p>1063 (34.8%) participants responded. The mean age was 21.4 (SE 0.2) years old. Close contacts had the highest knowledge score (71.7%, p = 0.004) while cases had the highest practice scores (58.8%, p < 0.001). There was a strong correlation between knowledge and practice scores (r = 0.27, p < 0.01) and knowledge and attitudes scores (r = 0.21, p < 0.01). The significant predictors of higher practice scores were higher knowledge scores (p < 0.001), Malay ethnicity (p < 0.001), exposure group (p < 0.05) and lower education level (p < 0.05). The significant predictors for higher attitudes scores were Malay ethnicity (p = 0.014) and higher knowledge scores (p < 0.001). The significant predictor for higher knowledge score was being a contact (p = 0.007).</p> <p>Conclusion</p> <p>Knowledge is a significant influence on attitudes and practices in a pandemic, and personal experience influences practice behaviors. Efforts should be targeted at educating the general population to improve practices in the current pandemic, as well as for future epidemics.</p

    Efficient CRISPR/Cas9 genome editing in a salmonid fish cell line using a lentivirus delivery system

    Get PDF
    The present study was funded by were funded by the Biotechnology and Biological Sciences Research Council (BB/R008612/1, BB/S004343/1 to RH and RG; grant BB/R008973/1 to SM and CD) and the Institute Strategic Programme Grants (BBS/E/D/20002172, BBS/E/D/30002275 and BBS/E/D/10002070, to RH and RG). The funders had no roles in the study design, data collection and analysis, decision to publish or preparation of the manuscript.Peer reviewedPublisher PD

    A bacterial glycan core linked to surface (S)-layer proteins modulates host immunity through Th17 suppression

    Get PDF
    Tannerella forsythia is a pathogen implicated in periodontitis, an inflammatory disease of the tooth-supporting tissues often leading to tooth loss. This key periodontal pathogen is decorated with a unique glycan core O-glycosidically linked to the bacterium's proteinaceous surface (S)-layer lattice and other glycoproteins. Herein, we show that the terminal motif of this glycan core acts to modulate dendritic cell effector functions to suppress T-helper (Th)17 responses. In contrast to the wild-type bacterial strain, infection with a mutant strain lacking the complete S-layer glycan core induced robust Th17 and reduced periodontal bone loss in mice. Our findings demonstrate that surface glycosylation of this pathogen may act to ensure its persistence in the host likely through suppression of Th17 responses. In addition, our data suggest that the bacterium then induces the Toll-like receptor 2–Th2 inflammatory axis that has previously been shown to cause bone destruction. Our study provides a biological basis for pathogenesis and opens opportunities in exploiting bacterial glycans as therapeutic targets against periodontitis and a range of other infectious diseases
    corecore