173 research outputs found
The condition-dependent transcriptional landscape of Burkholderia pseudomallei
This is the final version of the article. Available from the publisher via the DOI in this record.Burkholderia pseudomallei (Bp), the causative agent of the often-deadly infectious disease melioidosis, contains one of the largest prokaryotic genomes sequenced to date, at 7.2 Mb with two large circular chromosomes (1 and 2). To comprehensively delineate the Bp transcriptome, we integrated whole-genome tiling array expression data of Bp exposed to >80 diverse physical, chemical, and biological conditions. Our results provide direct experimental support for the strand-specific expression of 5,467 Sanger protein-coding genes, 1,041 operons, and 766 non-coding RNAs. A large proportion of these transcripts displayed condition-dependent expression, consistent with them playing functional roles. The two Bp chromosomes exhibited dramatically different transcriptional landscapes--Chr 1 genes were highly and constitutively expressed, while Chr 2 genes exhibited mosaic expression where distinct subsets were expressed in a strongly condition-dependent manner. We identified dozens of cis-regulatory motifs associated with specific condition-dependent expression programs, and used the condition compendium to elucidate key biological processes associated with two complex pathogen phenotypes--quorum sensing and in vivo infection. Our results demonstrate the utility of a Bp condition-compendium as a community resource for biological discovery. Moreover, the observation that significant portions of the Bp virulence machinery can be activated by specific in vitro cues provides insights into Bp's capacity as an "accidental pathogen", where genetic pathways used by the bacterium to survive in environmental niches may have also facilitated its ability to colonize human hosts.This work was funded by a core grant provided by the Agency for Science, Technology and Research to the Genome Institute of Singapore, and funding from the Defence Medical and Environmental Research Institute, Singapore. This work was supported in part through NIAID contract HHSN266200400035C to BWS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
What do the australian black summer fires signify for the global fire crisis?
The 2019–20 Australian fire season was heralded as emblematic of the catastrophic harm wrought by climate change. Similarly extreme wildfire seasons have occurred across the globe in recent years. Here, we apply a pyrogeographic lens to the recent Australian fires to examine the range of causes, impacts and responses. We find that the extensive area burnt was due to extreme climatic circumstances. However, antecedent hazard reduction burns (prescribed burns with the aim of reducing fuel loads) were effective in reducing fire severity and house loss, but their effectiveness declined under extreme weather conditions. Impacts were disproportionately borne by socially disadvantaged regional communities. Urban populations were also impacted through prolonged smoke exposure. The fires produced large carbon emissions, burnt fire-sensitive ecosystems and exposed large areas to the risk of biodiversity decline by being too frequently burnt in the future. We argue that the rate of change in fire risk delivered by climate change is outstripping the capacity of our ecological and social systems to adapt. A multi-lateral approach is required to mitigate future fire risk, with an emphasis on reducing the vulnerability of people through a reinvigoration of community-level capacity for targeted actions to complement mainstream fire management capacity
Association of iron overload based quantitative T2* MRI technique and carotid intima-media thickness in patients with beta-thalassemia: A cross-sectional study
<p>Abstract</p> <p>Background</p> <p>Body iron status has been implicated in atherosclerotic cardiovascular disease. The main hypothesis is that high iron status is associated with increased risk of atherosclerosis. We investigated the potential role of iron as an additional risk factor promoting atherosclerosis among beta-thalassemic patients.</p> <p>Methods</p> <p>In this cross-sectional study, the liver iron load was assessed by quantitative T2* MRI technique and intima-media thickness (IMT) of the common carotid artery by high-resolution ultrasound among 119 patients (62 male, 57 female) with beta-thalassemia (major and intermediate) whose age ranged from 10 to 50 years with a mean of 25.6 years. The patients were divided into three groups according to the severity of iron loading, obtained by T2*MRI technique: group I (normal), group II (mild) and group III (moderate and severe) iron load.</p> <p>For elimination of the effect of age on carotid IMT values, the patients also were divided into four age groups (10-19 y, 20-29 y, 30-39 y and 40-50 y). Mean carotid IMT based on the severity of iron loading were compared at different age groups, using one way ANOVA analysis for assessing the effect of iron loading on carotid IMT. Pearson's coefficient of correlation were used to assess the degree of correlation between studied variables (liver T2*, IMT, age).</p> <p>Results</p> <p>There were significant differences in mean carotid IMT based on the severity of iron loading at different age groups, with P = 0.003 at 20-29 y, P = 0.006 at 30-39 y and p = 0.037 at 40-50 y. Age (p = 0.001) and liver T2*(p = 0.003) had significant correlation with mean carotid IMT independently.</p> <p>At the age group of 10-19 years, there were not significant differences in mean carotid IMT based on the liver iron loading (p = 0.661).</p> <p>No significant differences also are seen in mean carotid IMT between male and female (p = 0.41).</p> <p>Conclusions</p> <p>This study identified a relationship between body iron status and carotid IMT. This relationship support to the hypothesis of a link between body iron load and atherosclerosis.</p
An internal ribosome entry site in the 5′ untranslated region of epidermal growth factor receptor allows hypoxic expression
The expression of epidermal growth factor receptor (EGFR/ERBB1/HER1) is implicated in the progress of numerous cancers, a feature that has been exploited in the development of EGFR antibodies and EGFR tyrosine kinase inhibitors as anti-cancer drugs. However, EGFR also has important normal cellular functions, leading to serious side effects when EGFR is inhibited. One damaging characteristic of many oncogenes is the ability to be expressed in the hypoxic conditions associated with the tumour interior. It has previously been demonstrated that expression of EGFR is maintained in hypoxic conditions via an unknown mechanism of translational control, despite global translation rates generally being attenuated under hypoxic conditions. In this report, we demonstrate that the human EGFR 5′ untranslated region (UTR) sequence can initiate the expression of a downstream open reading frame via an internal ribosome entry site (IRES). We show that this effect is not due to either cryptic promoter activity or splicing events. We have investigated the requirement of the EGFR IRES for eukaryotic initiation factor 4A (eIF4A), which is an RNA helicase responsible for processing RNA secondary structure as part of translation initiation. Treatment with hippuristanol (a potent inhibitor of eIF4A) caused a decrease in EGFR 5′ UTR-driven reporter activity and also a reduction in EGFR protein level. Importantly, we show that expression of a reporter gene under the control of the EGFR IRES is maintained under hypoxic conditions despite a fall in global translation rates
A Canadian Critical Care Trials Group project in collaboration with the international forum for acute care trialists - Collaborative H1N1 Adjuvant Treatment pilot trial (CHAT): study protocol and design of a randomized controlled trial
<p>Abstract</p> <p>Background</p> <p>Swine origin influenza A/H1N1 infection (H1N1) emerged in early 2009 and rapidly spread to humans. For most infected individuals, symptoms were mild and self-limited; however, a small number developed a more severe clinical syndrome characterized by profound respiratory failure with hospital mortality ranging from 10 to 30%. While supportive care and neuraminidase inhibitors are the main treatment for influenza, data from observational and interventional studies suggest that the course of influenza can be favorably influenced by agents not classically considered as influenza treatments. Multiple observational studies have suggested that HMGCoA reductase inhibitors (statins) can exert a class effect in attenuating inflammation. The Collaborative H1N1 Adjuvant Treatment (CHAT) Pilot Trial sought to investigate the feasibility of conducting a trial during a global pandemic in critically ill patients with H1N1 with the goal of informing the design of a larger trial powered to determine impact of statins on important outcomes.</p> <p>Methods/Design</p> <p>A multi-national, pilot randomized controlled trial (RCT) of once daily enteral rosuvastatin versus matched placebo administered for 14 days for the treatment of critically ill patients with suspected, probable or confirmed H1N1 infection. We propose to randomize 80 critically ill adults with a moderate to high index of suspicion for H1N1 infection who require mechanical ventilation and have received antiviral therapy for ≤ 72 hours. Site investigators, research coordinators and clinical pharmacists will be blinded to treatment assignment. Only research pharmacy staff will be aware of treatment assignment. We propose several approaches to informed consent including a priori consent from the substitute decision maker (SDM), waived and deferred consent. The primary outcome of the CHAT trial is the proportion of eligible patients enrolled in the study. Secondary outcomes will evaluate adherence to medication administration regimens, the proportion of primary and secondary endpoints collected, the number of patients receiving open-label statins, consent withdrawals and the effect of approved consent models on recruitment rates.</p> <p>Discussion</p> <p>Several aspects of study design including the need to include central randomization, preserve allocation concealment, ensure study blinding compare to a matched placebo and the use novel consent models pose challenges to investigators conducting pandemic research. Moreover, study implementation requires that trial design be pragmatic and initiated in a short time period amidst uncertainty regarding the scope and duration of the pandemic.</p> <p>Trial Registration Number</p> <p><a href="http://www.controlled-trials.com/ISRCTN45190901">ISRCTN45190901</a></p
D25V apolipoprotein C-III variant causes dominant hereditary systemic amyloidosis and confers cardiovascular protective lipoprotein profile
Apolipoprotein C-III deficiency provides cardiovascular protection, but apolipoprotein C-III is not known to be associated with human amyloidosis. Here we report a form of amyloidosis characterized by renal insufficiency caused by a new apolipoprotein C-III variant, D25V. Despite their uremic state, the D25V-carriers exhibit low triglyceride (TG) and apolipoprotein C-III levels, and low very-low-density lipoprotein (VLDL)/high high-density lipoprotein (HDL) profile. Amyloid fibrils comprise the D25V-variant only, showing that wild-type apolipoprotein C-III does not contribute to amyloid deposition in vivo. The mutation profoundly impacts helical structure stability of D25V-variant, which is remarkably fibrillogenic under physiological conditions in vitro producing typical amyloid fibrils in its lipid-free form. D25V apolipoprotein C-III is a new human amyloidogenic protein and the first conferring cardioprotection even in the unfavourable context of renal failure, extending the evidence for an important cardiovascular protective role of apolipoprotein C-III deficiency. Thus, fibrate therapy, which reduces hepatic APOC3 transcription, may delay amyloid deposition in affected patients
A human in vitro model system for investigating genome-wide host responses to SARS coronavirus infection
10.1186/1471-2334-4-34BMC Infectious Diseases4-BIDM
Cancer cell sensitivity to bortezomib is associated with survivin expression and p53 status but not cancer cell types
<p>Abstract</p> <p>Background</p> <p>Survivin is known playing a role in drug resistance. However, its role in bortezomib-mediated inhibition of growth and induction of apoptosis is unclear. There are conflicting reports for the effect of bortezomib on survivin expression, which lacks of a plausible explanation. Methods: In this study, we tested cancer cells with both p53 wild type and mutant/null background for the relationship of bortezomib resistance with survivin expression and p53 status using MTT assay, flow cytometry, DNA fragmentation, caspase activation, western blots and RNAi technology.</p> <p>Results</p> <p>We found that cancer cells with wild type p53 show a low level expression of survivin and are sensitive to treatment with bortezomib, while cancer cells with a mutant or null p53 show a high level expression of survivin and are resistant to bortezomib-mediated apoptosis induction. However, silencing of survivin expression utilizing survivin mRNA-specific siRNA/shRNA in p53 mutant or null cells sensitized cancer cells to bortezomib mediated apoptosis induction, suggesting a role for survivin in bortezomib resistance. We further noted that modulation of survivin expression by bortezomib is dependent on p53 status but independent of cancer cell types. In cancer cells with mutated p53 or p53 null, bortezomib appears to induce survivin expression, while in cancer cells with wild type p53, bortezomib downregulates or shows no significant effect on survivin expression, which is dependent on the drug concentration, cell line and exposure time.</p> <p>Conclusions</p> <p>Our findings, for the first time, unify the current inconsistent findings for bortezomib treatment and survivin expression, and linked the effect of bortezomib on survivin expression, apoptosis induction and bortezomib resistance in the relationship with p53 status, which is independent of cancer cell types. Further mechanistic studies along with this line may impact the optimal clinical application of bortezomib in solid cancer therapeutics.</p
- …