164 research outputs found

    Performance and long-term stability of the barley hordothionin gene in multiple transgenic apple lines

    Get PDF
    Introduction of sustainable scab resistance in elite apple cultivars is of high importance for apple cultivation when aiming at reducing the use of chemical crop protectants. Genetic modification (GM) allows the rapid introduction of resistance genes directly into high quality apple cultivars. Resistance genes can be derived from apple itself but genetic modification also opens up the possibility to use other, non-host resistance genes. A prerequisite for application is the long-term performance and stability of the gene annex trait in the field. For this study, we produced and selected a series of transgenic apple lines of two cultivars, i.e. ‘Elstar’ and ‘Gala’ in which the barley hordothionin gene (hth) was introduced. After multiplication, the GM hth-lines, non-GM susceptible and resistant controls and GM non-hth controls were planted in a random block design in a field trial in 40 replicates. Scab resistance was monitored after artificial inoculation (first year) and after natural infection (subsequent years). After the trial period, the level of expression of the hth gene was checked by quantitative RT-PCR. Four of the six GM hth apple lines proved to be significantly less susceptible to apple scab and this trait was found to be stable for the entire 4-year period. Hth expression at the mRNA level was also stable

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Generation of Trophoblast Stem Cells from Rabbit Embryonic Stem Cells with BMP4

    Get PDF
    Trophoblast stem (TS) cells are ideal models to investigate trophectoderm differentiation and placental development. Herein, we describe the derivation of rabbit trophoblast stem cells from embryonic stem (ES) cells. Rabbit ES cells generated in our laboratory were induced to differentiate in the presence of BMP4 and TS-like cell colonies were isolated and expanded. These cells expressed the molecular markers of mouse TS cells, were able to invade, give rise to derivatives of TS cells, and chimerize placental tissues when injected into blastocysts. The rabbit TS-like cells maintained self-renewal in culture medium with serum but without growth factors or feeder cells, whilst their proliferation and identity were compromised by inhibitors of FGFs and TGF-ÎČ receptors. Taken together, our study demonstrated the derivation of rabbit TS cells and suggested the essential roles of FGF and TGF-ÎČ signalings in maintenance of rabbit TS cell self-renewal

    siRNA-Based Targeting of Cyclin E Overexpression Inhibits Breast Cancer Cell Growth and Suppresses Tumor Development in Breast Cancer Mouse Model

    Get PDF
    Cyclin E is aberrantly expressed in many types of cancer including breast cancer. High levels of the full length as well as the low molecular weight isoforms of cyclin E are associated with poor prognosis of breast cancer patients. Notably, cyclin E overexpression is also correlated with triple-negative basal-like breast cancers, which lack specific therapeutic targets. In this study, we used siRNA to target cyclin E overexpression and assessed its ability to suppress breast cancer growth in nude mice. Our results revealed that cyclin E siRNA could effectively inhibit overexpression of both full length and low molecular weight isoforms of cyclin E. We found that depletion of cyclin E promoted apoptosis of cyclin E-overexpressing cells and blocked their proliferation and transformation phenotypes. Significantly, we further demonstrated that administration of cyclin E siRNA could inhibit breast tumor growth in nude mice. In addition, we found that cyclin E siRNA synergistically enhanced the cell killing effects of doxorubicin in cell culture and this combination greatly suppressed the tumor growth in mice. In conclusion, our results indicate that cyclin E, which is overexpressed in 30% of breast cancer, may serve as a novel and effective therapeutic target. More importantly, our study clearly demonstrates a very promising therapeutic potential of cyclin E siRNA for treating the cyclin E-overexpressing breast cancers, including the very malignant triple-negative breast cancers

    Differential expression of MUC genes in endometrial and cervical tissues and tumors

    Get PDF
    BACKGROUND: Mucin glycoprotein's are major components of mucus and are considered an important class of tumor associated antigens. The objective of this study was to investigate the expression of human MUC genes (MUC1, MUC2, MUC5B, MUC5AC and MUC8) in human endometrium and cervix, and to compare and quantitate the expression of MUC genes in normal and cancerous tissues. METHODS: Slot blot techniques were used to study the MUC gene expression and quantitation. RESULTS: Of the five-mucin genes studied, MUC1, MUC5B and MUC8 showed high expression levels in the normal and cancerous endometrial and cervical tissues, MUC2 and MUC5AC showed considerably lower expression. Statistically, higher levels of MUC1, MUC5B and MUC8 were observed in endometrial adenocarcinomas compared to normal tissues. In contrast, only MUC1 levels increased with no significant changes in expression of MUC5B and MUC8 in cervical tumors over normal cervical tissues. CONCLUSION: Endometrial tumors showed increased expression of MUC1, MUC5B and MUC8 over normal tissues. Only MUC1 appears to be increase, in cervical tumors. All the studied tissues showed high and consistent expression of MUC8 mRNA. Low to neglible levels of MUC2 and MUC5AC were observed in all studied endometrial and cervical tissues

    Endoscopic diagnosis of acute intestinal GVHD following allogeneic hematopoietic SCT: a retrospective analysis in 175 patients

    Get PDF
    Diagnosis of acute intestinal GVHD (aGVHD) following allogeneic hematopoietic cell transplantation is based on clinical symptoms and histological lesions. This retrospective analysis aimed to validate the ‘Freiburg Criteria' for the endoscopic grading of intestinal aGVHD. Grade 1: no clear-cut criteria; grade 2: spotted erythema; grade 3: aphthous lesions; and grade 4: confluent defects, ulcers, denudation of the mucosa. Having excluded patients with infectious diarrhea, we evaluated 175 consecutive patients between January 2001 and June 2009. Setting a cutoff between grade 1 (no change in therapy) and grade 2 (intensification of immunosuppression), macroscopy had a sensitivity of 89.2% (95% confidence interval (CI): 80.4–94.9%), a specificity of 79.4% (95% CI: 69.6–87.1%), a positive-predictive value of 79.6% (95% CI: 70.0–87.2%) and a negative-predictive value of 89.0% (95% CI: 80.2–94.9%). In all, 20% of patients with aGVHD in the lower gastrointestinal tract (GIT) had lesions only in the terminal ileum. In all patients with aGVHD â©Ÿ2 of the upper GIT, typical lesions were also found in the lower GIT. Ileo-colonoscopy showed the highest diagnostic yield for aGVHD. In conclusion, the ‘Freiburg Criteria' for macroscopic diagnosis of intestinal aGVHD provide high accuracy for identifying aGVHD â©Ÿ2

    Are we under-utilizing the talents of primary care personnel? A job analytic examination

    Get PDF
    BACKGROUND: Primary care staffing decisions are often made unsystematically, potentially leading to increased costs, dissatisfaction, turnover, and reduced quality of care. This article aims to (1) catalogue the domain of primary care tasks, (2) explore the complexity associated with these tasks, and (3) examine how tasks performed by different job titles differ in function and complexity, using Functional Job Analysis to develop a new tool for making evidence-based staffing decisions. METHODS: Seventy-seven primary care personnel from six US Department of Veterans Affairs (VA) Medical Centers, representing six job titles, participated in two-day focus groups to generate 243 unique task statements describing the content of VA primary care. Certified job analysts rated tasks on ten dimensions representing task complexity, skills, autonomy, and error consequence. Two hundred and twenty-four primary care personnel from the same clinics then completed a survey indicating whether they performed each task. Tasks were catalogued using an adaptation of an existing classification scheme; complexity differences were tested via analysis of variance. RESULTS: Objective one: Task statements were categorized into four functions: service delivery (65%), administrative duties (15%), logistic support (9%), and workforce management (11%). Objective two: Consistent with expectations, 80% of tasks received ratings at or below the mid-scale value on all ten scales. Objective three: Service delivery and workforce management tasks received higher ratings on eight of ten scales (multiple functional complexity dimensions, autonomy, human error consequence) than administrative and logistic support tasks. Similarly, tasks performed by more highly trained job titles received higher ratings on six of ten scales than tasks performed by lower trained job titles. Contrary to expectations, the distribution of tasks across functions did not significantly vary by job title. CONCLUSION: Primary care personnel are not being utilized to the extent of their training; most personnel perform many tasks that could reasonably be performed by personnel with less training. Primary care clinics should use evidence-based information to optimize job-person fit, adjusting clinic staff mix and allocation of work across staff to enhance efficiency and effectiveness

    Cardiac fibrosis in aging mice

    Get PDF
    Dystrophic cardiac calcinosis (DCC), also called epicardial and myocardial fibrosis and mineralization, has been detected in mice of a number of laboratory inbred strains, most commonly C3H/HeJ and DBA/2J. In previous mouse breeding studies between these DCC susceptible and the DCC-resistant strain C57BL/6J, 4 genetic loci harboring genes involved in DCC inheritance were identified and subsequently termed Dyscalc loci 1 through 4. Here, we report susceptibility to cardiac fibrosis, a sub-phenotype of DCC, at 12 and 20 months of age and close to natural death in a survey of 28 inbred mouse strains. Eight strains showed cardiac fibrosis with highest frequency and severity in the moribund mice. Using genotype and phenotype information of the 28 investigated strains, we performed genome-wide association studies (GWAS) and identified the most significant associations on chromosome (Chr) 15 at 72 million base pairs (Mb) (P < 10(-13)) and Chr 4 at 122 Mb (P < 10(-11)) and 134 Mb (P < 10(-7)). At the Chr 15 locus, Col22a1 and Kcnk9 were identified. Both have been reported to be morphologically and functionally important in the heart muscle. The strongest Chr 4 associations were located approximately 6 Mb away from the Dyscalc 2 quantitative trait locus peak within the boundaries of the Extl1 gene and in close proximity to the Trim63 and Cap1 genes. In addition, a single-nucleotide polymorphism association was found on chromosome 11. This study provides evidence for more than the previously reported 4 genetic loci determining cardiac fibrosis and DCC. The study also highlights the power of GWAS in the mouse for dissecting complex genetic traits.The authors thank Jesse Hammer and Josiah Raddar for technical assistance. Research reported in this publication was supported by the Ellison Medical Foundation, Parker B. Francis Foundation, and the National Institutes of Health (R01AR055225 and K01AR064766). Mouse colonies were supported by the National Institutes of Health under Award Number AG025707 for the Jackson Aging Center. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The Jackson Laboratory Shared Scientific Services were supported in part by a Basic Cancer Center Core Grant from the National Cancer Institute (CA34196).This is the author accepted manuscript. The final version is available from Springer via http://dx.doi.org/10.1007/s00335-016-9634-

    The endogenous retrovirus ENS-1 provides active binding sites for transcription factors in embryonic stem cells that specify extra embryonic tissue

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Long terminal repeats (LTR) from endogenous retroviruses (ERV) are source of binding sites for transcription factors which affect the host regulatory networks in different cell types, including pluripotent cells. The embryonic epiblast is made of pluripotent cells that are subjected to opposite transcriptional regulatory networks to give rise to distinct embryonic and extraembryonic lineages. To assess the transcriptional contribution of ERV to early developmental processes, we have characterized <it>in vitro </it>and <it>in vivo </it>the regulation of ENS-1, a host adopted and developmentally regulated ERV that is expressed in chick embryonic stem cells.</p> <p>Results</p> <p>We show that <it>Ens-1 </it>LTR activity is controlled by two transcriptional pathways that drive pluripotent cells to alternative developmental fates. Indeed, both Nanog that maintains pluripotency and Gata4 that induces differentiation toward extraembryonic endoderm independently activate the LTR. Ets coactivators are required to support Gata factors' activity thus preventing inappropriate activation before epigenetic silencing occurs during differentiation. Consistent with their expression patterns during chick embryonic development, Gata4, Nanog and Ets1 are recruited on the LTR in embryonic stem cells; in the epiblast the complementary expression of Nanog and Gata/Ets correlates with the <it>Ens-1 </it>gene expression pattern; and Ens-1 transcripts are also detected in the hypoblast, an extraembryonic tissue expressing Gata4 and Ets2, but not Nanog. Accordingly, over expression of Gata4 in embryos induces an ectopic expression of <it>Ens-1</it>.</p> <p>Conclusion</p> <p>Our results show that <it>Ens-1 </it>LTR have co-opted conditions required for the emergence of extraembryonic tissues from pluripotent epiblasts cells. By providing pluripotent cells with intact binding sites for Gata, Nanog, or both, <it>Ens-1 </it>LTR may promote distinct transcriptional networks in embryonic stem cells subpopulations and prime the separation between embryonic and extraembryonic fates.</p

    Characterization of a fluvial aquifer at a range of depths and scales: the Triassic St Bees Sandstone Formation, Cumbria, UK

    No full text
    Fluvial sedimentary successions represent porous media that host groundwater and geothermal resources. Additionally, they overlie crystalline rocks hosting nuclear waste repositories in rift settings. The permeability characteristics of an arenaceous fluvial succession, the Triassic St Bees Sandstone Formation in England (UK), are described, from core-plug to well-test scale up to ~1 km depth. Within such lithified successions, dissolution associated with the circulation of meteoric water results in increased permeability (K~10−1–100 m/day) to depths of at least 150 m below ground level (BGL) in aquifer systems that are subject to rapid groundwater circulation. Thus, contaminant transport is likely to occur at relatively high rates. In a deeper investigation (> 150 m depth), where the aquifer has not been subjected to rapid groundwater circulation, well-test-scale hydraulic conductivity is lower, decreasing from K~10−2 m/day at 150–400 m BGL to 10−3 m/day down-dip at ~1 km BGL, where the pore fluid is hypersaline. Here, pore-scale permeability becomes progressively dominant with increasing lithostatic load. Notably, this work investigates a sandstone aquifer of fluvial origin at investigation depths consistent with highly enthalpy geothermal reservoirs (~0.7–1.1 km). At such depths, intergranular flow dominates in unfaulted areas with only minor contribution by bedding plane fractures. However, extensional faults represent preferential flow pathways, due to presence of high connective open fractures. Therefore, such faults may (1) drive nuclear waste contaminants towards the highly permeable shallow (< 150 m BGL) zone of the aquifer, and (2) influence fluid recovery in geothermal fields
    • 

    corecore