182 research outputs found

    Software Model Checking

    Full text link

    Scalable Verification of Linear Controller Software

    Get PDF
    We consider the problem of verifying software implementations of linear time-invariant controllers against mathematical specifications. Given a controller specification, multiple correct implementations may exist, each of which uses a different representation of controller state (e.g., due to optimizations in a third-party code generator). To accommodate this variation, we first extract a controller\u27s mathematical model from the implementation via symbolic execution, and then check input-output equivalence between the extracted model and the specification by similarity checking. We show how to automatically verify the correctness of C code controller implementation using the combination of techniques such as symbolic execution, satisfiability solving and convex optimization. Through evaluation using randomly generated controller specifications of realistic size, we demonstrate that the scalability of this approach has significantly improved compared to our own earlier work based on the invariant checking method

    Towards Generic Monitors for Object-Oriented Real-Time Maude Specifications

    Get PDF
    Non-Functional Properties (NFPs) are crucial in the design of software. Specification of systems is used in the very first phases of the software development process for the stakeholders to make decisions on which architecture or platform to use. These specifications may be an- alyzed using different formalisms and techniques, simulation being one of them. During a simulation, the relevant data involved in the anal- ysis of the NFPs of interest can be measured using monitors. In this work, we show how monitors can be parametrically specified so that the instrumentation of specifications to be monitored can be automatically performed. We prove that the original specification and the automati- cally obtained specification with monitors are bisimilar by construction. This means that the changes made on the original system by adding monitors do not affect its behavior. This approach allows us to have a library of possible monitors that can be safely added to analyze different properties, possibly on different objects of our systems, at will.Universidad de Málaga, Campus de Excelencia Internacional Andalucía Tech. Spanish MINECO/FEDER project TIN2014-52034-R, NSF Grant CNS 13-19109

    Automatic Verification of Finite Precision Implementations of Linear Controllers

    Get PDF
    We consider the problem of verifying finite precision implementation of linear time-invariant controllers against mathematical specifications. A specification may have multiple correct implementations which are different from each other in controller state representation, but equivalent from a perspective of input-output behavior (e.g., due to optimization in a code generator). The implementations may use finite precision computations (e.g. floating-point arithmetic) which cause quantization (i.e., roundoff) errors. To address these challenges, we first extract a controller\u27s mathematical model from the implementation via symbolic execution and floating-point error analysis, and then check approximate input-output equivalence between the extracted model and the specification by similarity checking. We show how to automatically verify the correctness of floating-point controller implementation in C language using the combination of techniques such as symbolic execution and convex optimization problem solving. We demonstrate the scalability of our approach through evaluation with randomly generated controller specifications of realistic size

    Demonstrating that Medical Devices Satisfy User Related Safety Requirements

    Get PDF
    One way of contributing to a demonstration that a medical device is acceptably safe is to show that the device satisfies a set of requirements known to mitigate hazards. This paper describes experience using formal techniques to model an IV infusion device and to prove that the modelled device captures a set of requirements. The requirements chosen for the study are based on a draft proposal developed by the US Food and Drug Administration (FDA). A major contributor to device related errors are (user) interaction errors. For this reason the chosen models and requirements focus on user interface related issues.FEDER - Federación Española de Enfermedades Raras(000062)This work has been funded by the EPSRC research grant EP/G059063/1: CHI+MED (Computer–Human Interaction for Medical Devices). J. C. Campos was funded by project NORTE-07-0124-FEDER-00006

    Simplifying the analysis of software design variants with a colorful alloy

    Get PDF
    Formal modeling and automatic analysis are essential to achieve a trustworthy software design prior to its implementation. Alloy and its Analyzer are a popular language and tool for this task. Frequently, rather than a single software artifact, the goal is to develop a full software product line (SPL) with many variants supporting different features. Ideally, software design languages and tools should provide support for analyzing all such variants (e.g., by helping pinpoint combinations of features that could break a property), but that is not currently the case. Even when developing a single artifact, support for multi-variant analysis is desirable to explore design alternatives. Several techniques have been proposed to simplify the implementation of SPLs. One such technique is to use background colors to identify the fragments of code associated with each feature. In this paper we propose to use that same technique for formal design, showing how to add support for features and background colors to Alloy and its Analyzer, thus easing the analysis of software design variants. Some illustrative examples and evaluation results are presented, showing the benefits and efficiency of the implemented technique.This work is financed by the ERDF - European Regional Development Fund - through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 - and by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, within project POCI-01- 0145-FEDER-016826. The third author was also supported by the FCT sabbatical grant with reference SFRH/BSAB/143106/2018

    SAT-based Explicit LTL Reasoning

    Full text link
    We present here a new explicit reasoning framework for linear temporal logic (LTL), which is built on top of propositional satisfiability (SAT) solving. As a proof-of-concept of this framework, we describe a new LTL satisfiability tool, Aalta\_v2.0, which is built on top of the MiniSAT SAT solver. We test the effectiveness of this approach by demonnstrating that Aalta\_v2.0 significantly outperforms all existing LTL satisfiability solvers. Furthermore, we show that the framework can be extended from propositional LTL to assertional LTL (where we allow theory atoms), by replacing MiniSAT with the Z3 SMT solver, and demonstrating that this can yield an exponential improvement in performance

    Modelling and validating an engineering application in kernel P systems

    Get PDF
    © 2018, Springer International Publishing AG. This paper illustrates how kernel P systems (kP systems) can be used for modelling and validating an engineering application, in this case a cruise control system of an electric bike. The validity of the system is demonstrated via formal verification, carried out using the kPWorkbench tool. Furthermore, we show how the kernel P system model can be tested using automata and X-machine based techniques
    corecore