
This is a repository copy of Modelling and validating an engineering application in kernel P
systems.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/129141/

Version: Accepted Version

Proceedings Paper:
Lefticaru, R., Bakir, M.E., Konur, S. et al. (2 more authors) (2018) Modelling and validating
an engineering application in kernel P systems. In: Gheorghe, M., Rozenberg, G.,
Salomaa, A. and Zandron, C., (eds.) Membrane Computing. CMC 2017. 18th International
Conference, CMC 2017, 25-28 Jul 2017, Bradford, UK. Lecture Notes in Computer
Science, 10725 . Springer International Publishing , pp. 183-195. ISBN 9783319733586

https://doi.org/10.1007/978-3-319-73359-3_12

The final authenticated version is available online at
https://doi.org/10.1007/978-3-319-73359-3_12

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Modelling and Validating an Engineering

Application in Kernel P Systems

Raluca Lefticaru1,2, Mehmet Emin Bakir3, Savas Konur1, Mike Stannett3,
Florentin Ipate2

1 School of Electrical Engineering and Computer Science,
University of Bradford, West Yorkshire, Bradford BD7 1DP, UK

{r.lefticaru,s.konur}@bradford.ac.uk
2 Department of Computer Science, University of Bucharest,

Str. Academiei nr. 14, 010014, Bucharest, Romania
florentin.ipate@ifsoft.ro

3 Department of Computer Science, The University of Sheffield,
Regent Court, 211 Portobello, Sheffield S1 4DP, UK

{mebakir1,m.stannett}@sheffield.ac.uk

Abstract. This paper illustrates how kernel P systems (kP systems)
can be used for modelling and validating an engineering application, in
this case a cruise control system of an electric bike. The validity of the
system is demonstrated via formal verification, carried out using the
kPWorkbench tool. Furthermore, we show how the kernel P system
model can be tested using automata and X-machine based techniques.
Keywords: membrane computing; kernel P systems; cruise control;
electric bike; bicycle; verification; testing.

1 Introduction

Nature inspired computational approaches have been the focus of research for
several decades. Membrane computing [21] is one of these paradigms that has
recently been through significant developments and achievements. For the most
up to date results, we refer the reader to [22]. The main computational models
are called P systems, inspired by the functioning and structure of the living cells.

In recent years, various types or classes of P systems have been introduced
and applied to different problems. While these variants provide more flexibility
in modelling, this has inevitably resulted in a large pool of P system variants,
which do not have a coherent integrating view.

Kernel P (kP) systems have been introduced to unify many variants of P
system models, and combine a blend of various P system features and concepts,
including (i) complex guards attached to rules, (ii) flexible ways to specify the
system structure and dynamically change it and (iii) various execution strategies
for rules and compartments.

Kernel P systems are supported by a software suite, called kPWorkbench [5].
The platform integrates several tools to simulate and verify kP systems mod-
els written in a modelling language, called kP-Lingua, capable of mapping the
kernel P system specification into a machine readable representation.

2 R. Lefticaru, M.E. Bakir, S. Konur, M. Stannett, F. Ipate

The usability and efficiency of kP systems have been illustrated by a num-
ber of representative case studies, ranging from systems and synthetic biology,
e.g. quorum sensing [18], genetic Boolean gates [23] and synthetic pulse gener-
ators [1], to some classical computational problems, e.g. sorting [6], broadcast-
ing [10] and subset sum [5].

Here, as an engineering application, we focus on an e-bike cruise control sys-
tem. An e-bike (electric bicycle) is a bicycle that uses an integrated rechargeable
battery and an electric motor, which provides propulsion. A cruise control is an
advanced driver-assistance system technology that automatically regulates the
speed of a transportation system (such as motor vehicle or electric bicycle) set
by the user. From a system design perspective, the validation of the operational
safety of any component/feature is very crucial [24].

In this paper, we will model an e-bike cruise control system using kernel
P systems and verify its behaviour using the kPWorkbench verification en-
vironment. We also show how the kernel P system model can be tested using
automata and X-machine based techniques.

This paper is structured as follows: Section 2 introduces the preliminaries
and theoretical background. Section 3 presents our modelling approach using
kernel P systems, while Sections 4 and 5 present the verification and testing
approaches. Finally, conclusions and further work are presented in Section 6.

2 Background

This section briefly presents the cruise control system, then gives the basic def-
initions regarding kernel P systems [9], a presentation of the kPWorkbench

software suite, and previous testing approaches for membrane systems.

2.1 Cruise control system for an electric bicycle

In this paper, we focus on an e-bike cruise control system. By controlling the
speed of the e-bike (or other transportation system), this feature makes the
driving experience easier as the user does not have to use the accelerator or
brake. For an e-bike system a cruise control feature also assists the user by
improving the control of the journey time and controlling the level of exercise
undertaken.

From a system design point of view, however, adding a new feature brings
in new challenges for the operational safety of the new functionality [24]. Thus
validation of additional functionalities of any new technology and their impact
on other components of an existing system is important. This will be our focus
in this paper. The behaviour of the e-bike cruise control considered in this paper
is shown in Figure 1.

In a previous paper [20], a similar e-bike case study has been used to il-
lustrate an integrated approach, combining software engineering methodologies
(verification and model-based testing) with notations and methods from sys-
tem engineering. Although the two state machines corresponding to the e-bike

Modelling and Validating an Engineering Application in Kernel P Systems 3

PC

PO

CC

BR

PA

PA request

C
C

 re
q

u
e

st

PA cancelled

C
C

 c
a

n
ce

ll
e

d

P
C

 c
a

n
ce

ll
e

d

P
C

 re
q

u
e

st

b
ra

ke

b
ra

ke

b
ra

ke

ca
n

ce
ll

e
d

Fig. 1. The state machine representing the behaviour of the e-bike cruise control system
considered in this paper. The system works as follows:

.– At any time, the system can be at any of the following states:
(i) pedal bike (Pedal Only – PO, for short)
(ii) pedal bike with power assistance (Pedal Assist – PA)
(iii) maintain constant speed (Cruise Control – CC)
(iv) pedal to charge battery (Pedal Charge – PC)
(v) brake (Brake – BR).

– CC can be activated from PO or PA.
– If CC is cancelled, the system returns to the state from where it was activated i.e.,

PO or PA, respectively.
– Pedal assist can be requested when the user is pedalling.
– Pedal charge can be requested when the user is pedalling.
– When the user brakes from CC mode, the system returns to PA/PO before going

to BR (if brake is still held).
– BR can be reached from PO, PA or PC.
– If the user releases the brake, the system goes to PO, no matter which was the

state before Brake. This happens because from the Brake state, after releasing the
brake lever, one can only start to pedal and enter in PO mode. In order to enter in
PA mode, the user must first start to pedal and then make a pedal assist request.

system (from current paper and from [20]) have many similarities, the current
approach adopts kernel P systems as modelling formalism and further illustrates
how these can be used for simulating and validating an engineering application.

2.2 Kernel P systems

We first begin recalling the formal definition of kernel P systems (or kP systems).

Definition 1. A kP system of degree n is a tuple kΠ = (A, µ,C1, . . . , Cn, i0),
where

– A is a finite set of elements called objects;

4 R. Lefticaru, M.E. Bakir, S. Konur, M. Stannett, F. Ipate

– µ defines the membrane structure, which is a graph, (V,E), where V is a
set of vertices representing components (compartments), and E is a set of
edges, i. e., links between components;

– Ci = (ti, wi,0), 1 ≤ i ≤ n, is a compartment of the system consisting of a
compartment type, ti, from a set T and an initial multiset, wi,0 over A; the
type ti = (Ri, ρi) consists of a set of evolution rules, Ri, and an execution
strategy, ρi;

– i0 is the output compartment where the result is obtained.

Kernel P systems have features inspired by object-oriented programming:
one compartment type can have one or more instances. These instances share
the same set of rules and execution strategies (so will deliver the same function-
ality), but they may contain different multisets of objects and different neigh-
bours according to the graph relation specified by (V,E). Within the kP systems
framework, the following types of evolution rules have been considered so far:

– rewriting and communication rule: x −→ y{g}, where x ∈ A+ and y repre-
sents a multiset of objects over A∗ with potential different compartment type
targets (each symbol from the right side of the rule can be sent to a different
compartment, specified by its type; if multiple compartments of the same
type are linked to the current compartment, then one is randomly chosen to
be the target). Unlike cell-like P systems, the targets in kP systems indicate
only the types of compartments to which the objects will be sent, not par-
ticular instances. Also, for kP systems, complex guards can be represented,
using multisets over A with relational and Boolean operators [9].

– structure changing rules: membrane division, membrane dissolution, link cre-
ation and link destruction rules, which all may also incorporate complex
guards and that are covered in detail in [9].

In addition to its evolution rules, each compartment type in a kP system has
an associated execution strategy. The rules corresponding to a compartment can
be grouped in blocks, each having one of the following strategies:

– sequential : if the current rule is applicable, then it is executed, advancing
towards the next rule/block of rules; otherwise, the execution terminates;

– choice: a non-deterministic choice within a set of rules. One and only one
applicable rule will be executed if such a rule exists, otherwise the whole
block is simply skipped;

– arbitrary : the rules from the block can be executed zero or more times by
non-deterministically choosing any of the applicable rules;

– maximal parallel : the classic execution mode used in membrane computing.

These execution strategies and the fact that in any compartment several
blocks with different strategies can be composed and executed offer a lot of
flexibility to the kP system designer, similarly to procedural programming.

Modelling and Validating an Engineering Application in Kernel P Systems 5

2.3 kPWorkbench

Kernel P systems are supported by an integrated software suite, kPWorkbench

[5], which employs a set of simulation and formal verification tools and methods
that permit simulating and verifying kP system models, written in kP-Lingua.

The verification component of kPWorkbench checks the correctness of kP
system models by exhaustively analysing all possible behaviours. In order to
facilitate the specification of system requirements, kPWorkbench features a
property language, called kP-Queries, which comprises a list of property patterns
written as natural language statements. The properties expressed in kP-Queries
are verified using the Spin [13] and NuSMV [3] model checkers after being
translated into corresponding Linear Temporal Logic (LTL) and Computation
Tree Logic (CTL) syntax.

The simulation component features a native simulator [2, 19], which allows
the users to simulate kP system models efficiently. In addition, kPWorkbench

integrates the Flame simulator [4, 23], a general purpose large scale agent based
simulation environment, based on a method that allows users to express kP
systems as a set of communicating X-machines [11].

2.4 Kernel P systems testing

When testing a kP system model, an automata model needs to be constructed
first, based on the computation tree of the kP system. As, in general, the com-
putation tree may be infinite and cannot be modelled by a finite automaton,
an approximation of the tree is used. This approximation is obtained by limit-
ing the length of any computation to an upper bound k and considering only
computations up to k transitions in length. This approximation is then used to
construct a deterministic finite cover automaton (DFCA) of the model [6–8].

However, in the case of the e-bike, this can be naturally modelled by a state-
based formalism and, furthermore, the kP system was derived from such a model
(Fig. 1). Therefore one can use this state-based model in testing. It can be
observed, however, that the model is not exactly a finite automaton since an
additional variable is used to decide to which state (PO or PA) the e-bike re-
turns when the Cruise Control facility is cancelled1. Such a formalism, that
combines a finite state machine like control with data structures is the stream
X-machine [12].

A stream X-machine (SXM) is like a finite automaton in which the transitions
are labelled by partial functions (or, more generally, relations) instead of mere
symbols. Formally,

1 One could build a Finite State Automaton with two extra states (CCPO and CCPA,
that allow to come back to PO and PA, respectively, when CC facility is cancelled),
plus other necessary transitions from/to these states, in order to simulate the same
behaviour of the e-bike model. However, the corresponding X-machine model, having
one memory variable instead of the 2 extra states, has the advantage of keeping the
control structure simpler; having less states it’s easier to be read and the states
correspond exactly to the device modes.

6 R. Lefticaru, M.E. Bakir, S. Konur, M. Stannett, F. Ipate

Definition 2. A stream X-Machine (abbreviated SXM) is a tuple

Z = (Σ,Γ,Q,M,Φ, F, q0,m0),

where:

– Σ is the finite input alphabet.
– Γ is the finite output alphabet.
– Q is the finite set of states.
– M is a (possibly infinite) set called memory.
– Φ is a finite set of distinct processing functions; a processing function is a

non-empty (partial) function of type M ×Σ −→ Γ ×M.

– F is the (partial) next-state function, F : Q× Φ −→ Q.

– q0 ∈ Q is the initial state.
– m0 ∈ M is the initial memory value.

Intuitively, an SXM Z can be thought as a finite automaton with the arcs
labelled by functions from the set Φ. The automaton AZ = (Φ,Q, F, q0) over
the alphabet Φ is called the associated finite automaton (abbreviated associated
FA) of Z and is usually described by a state-transition diagram. As with any
automaton, the function F may be extended to take sequences from Φ∗, to form
the function F ∗ : Q × Φ∗ −→ Q. We will write LAZ

(q) = {p ∈ Φ∗ | (q, p) ∈
dom F ∗} to denote the set of paths that can be traced out of state q. When
q = q0, this will be called the language accepted by Z and denoted LAZ

.

3 kP model for e-bike cruise control

In [20], the e-bike cruise control system has been manually coded into different
formal models for verification and model-based testing, which is a very challeng-
ing and time consuming process. Also, any change in the system model requires
the modification of all formal models. This issue, the direct coding from the sys-
tem description, has been highlighted in various engineering applications, e.g.
real-time systems [15], safety critical systems [16], pervasive systems [17].

Using kernel P systems as modelling language provides some practical ad-
vantages. Namely, several verification and simulation methods integrated into
kPWorkbench are readily available; hence several complementary analysis
can be performed, which allows more in-depth analysis of the system. Since
kPWorkbench automatically translates a kP system model written in kP-
Lingua into the corresponding formal syntax, users do not need to carry out
manual encoding to access the tools. In addition, kP-Lingua has a simple lan-
guage, which makes it much easier to express system models.

In this section we present a kP system model for the cruise control system
described as a state machine in Fig. 1. The corresponding kP system has two
compartment types: (1) tEvent, in charge of generating all possible events (or
inputs from the user) and sending them to tEBike; (2) tEBike, receiving these
events and processing them according to state machine rules. The tEBike will

Modelling and Validating an Engineering Application in Kernel P Systems 7

always contain only one element of the set {PO,CC, PC, PA,BR} represent-
ing the current state of the machine, and might have other elements such as
{pa, pc, cc, br, pac, pcc, ccc, brc} representing the event received from tEvent or
{po2cc, pa2cc} as objects recording which was the previous state before CC. The
event names are lower case always, compared to their upper case states counter-
parts, e.g. pa, cc for pedal assist, cruise control request, while brc, pcc represent
brake cancelled or pedal charge cancelled.

Figure 2 presents the kP-Lingua source code corresponding to our model of
e-bike cruise control. The execution strategy is choice for both compartment
types, but in this particular case the maximal parallelism strategy would have
provided the same functionality. The computation is infinite and due to the non-
determinism of the model we would like to check if some properties hold for any
possible computation. The kP-Lingua model and verification files discussed here
are available for download on the kPWorkbench website2.

4 Verification

In this section, we check various properties of the e-bike model to verify that
the model satisfies the system requirements using the verification component of
kPWorkbench. The tool translates the kP-Lingua model of the e-bike system
into the NuSMV modelling language. Similarly, the properties written in kP-
Queries (using natural language statements) are translated into the NuSMV

property specification language (the translation can be in LTL or CTL).

Table 1 shows the verification results of the e-bike model properties. The
first column shows the property id; the second column describes the properties
informally; the third column shows the formal properties expressed in kP-Queries
(which are then translated into LTL and CTL in NuSMV syntax); and the last
column illustrates the verification result.

The first property checks whether BR is reachable from any state after brake
requested. The property holds because BR can be activated directly from PO,
PA and PC, and there are paths from CC to BR, too, over PO and PA. The
second property verifies that after BR is activated, the system will either stay in
BR or move to PO. As expected, this property also holds, because BR cannot
request any states other than itself or PO. The properties from 3 to 8 test dif-
ferent transitions from/to the CC state. For example, properties 4 and 5 verify
that after CC is cancelled, the system will return to the state from which it was
activated, i.e., PO or PA. Properties 3–8 all hold, except for property 8, which
is false. This property checks the existence of states (other than PO and PA)
from which we may have direct access to the CC state. However, only PO and
PA can access CC, so the property does not hold. The remaining properties, 9–
12, check the existence/absence of transitions from/to PC. Again, all properties
hold except property 11. This property asserts that PC can be activated from a
state other than PO, whereas in fact only PO can activate PC. Therefore, it does

2 http://kpworkbench.org/index.php/case-studies

8 R. Lefticaru, M.E. Bakir, S. Konur, M. Stannett, F. Ipate

type tEvent{

choice{

g -> g, br(tEBike).

g -> g, cc(tEBike).

g -> g, pa(tEBike).

g -> g, pc(tEBike).

g -> g, brc(tEBike).

g -> g, ccc(tEBike).

g -> g, pac(tEBike).

g -> g, pcc(tEBike).

}

}

type tEBike{

choice{

PO, br -> BR.

PO, cc -> CC, po2cc.

PO, pa -> PA.

PO, pc -> PC.

PO, brc -> PO.

PO, ccc -> PO.

PO, pac -> PO.

PO, pcc -> PO.

PA, br -> BR.

PA, cc -> CC, pa2cc.

PA, pa -> PA.

PA, pc -> PA.

PA, brc -> PA.

PA, ccc -> PA.

PA, pac -> PO.

PA, pcc -> PA.

PC, br -> BR.

PC, cc -> PC.

PC, pa -> PC.

PC, pc -> PC.

PC, brc -> PC.

PC, ccc -> PC.

PC, pac -> PC.

PC, pcc -> PO.

CC, br, pa2cc -> PA.

CC, br, po2cc -> PO.

CC, cc -> CC.

CC, pa -> CC.

CC, pc -> CC.

CC, brc -> CC.

CC, ccc, po2cc -> PO.

CC, ccc, pa2cc -> PA.

CC, pac -> CC.

CC, pcc -> CC.

BR, br -> BR.

BR, cc -> BR.

BR, pa -> BR.

BR, pc -> BR.

BR, brc -> PO.

BR, ccc -> BR.

BR, pac -> BR.

BR, pcc -> BR.

}

}

cEvent {g} (tEvent).

cEBike {PO} (tEBike).

cEvent - cEBike.

Fig. 2. kP-Lingua code for the e-bike cruise control system

not hold. The verified properties validate that the e-bike system works as desired.

5 Testing

In this section we show how the kernel P system model from Section 3 can be
tested using automata and X-machine based techniques.

For the kP system described in Section 3, the associated stream X-machine
(SXM) will be defined as follows:

Modelling and Validating an Engineering Application in Kernel P Systems 9

Table 1. Verified properties

Description kP-Queries Res.

1 Whenever brake is requested,
it will eventually be activated.

ctl: cEBike.br >0 followed-by cEBike.BR
>0

T

2 BR either stays same or it can
activate only PO

ltl: always ((cEBike.BR >0) implies (next
(cEBike.PO >0 or cEBike.BR >0)))

T

3 The user should be able to re-
quest / activate CC only from
PO or PA

ltl: never ((cEBike.BR >0 or cEBike.PC
>0) and (next (cEBike.CC >0)))

T

4 If CC activated from PO, then
the system will return to PO
after CC cancel or brake re-
quest

ltl: always ((cEBike.CC >0 and cE-
Bike.po2cc >0) and (cEBike.ccc >0 or cE-
Bike.br >0) implies (next(cEBike.PO >0)))

T

5 If CC activated from PA, then
the system will return to PA
after CC cancel or brake re-
quest

ltl: always ((cEBike.CC >0 and cE-
Bike.pa2cc >0) and (cEBike.ccc >0 or cE-
Bike.br >0) implies (next(cEBike.PA >0)))

T

6 When brake is requested in CC
the system returns to PA or
PO

ltl: always ((cEBike.CC >0 and cEBike.br
>0) implies (cEBike.BR >0 preceded-by

(cEBike.PO >0 or cEBike.PA >0)))

T

7 The system should not transit
directly from CC to Brake di-
rectly

ltl: never ((cEBike.CC >0 and cEBike.br
>0) and (next (cEBike.BR >0)))

T

8 CC can be activated from a
state other than PO or PA

ctl: (not (cEBike.PO >0 or cEBike.PA >0))
until cEBike.CC >0

F

9 PA and PC cannot directly ac-
tivate each other

ltl: never ((cEBike.PA >0 and (next (cE-
Bike.PC >0))) or (cEBike.PC >0 and (next
(cEBike.PO >0))))

T

10 CC and PC cannot directly ac-
tivate each other

ltl: never ((cEBike.CC >0 and (next (cE-
Bike.PC >0))) or (cEBike.PC >0 and (next
(cEBike.CC >0))))

T

11 PC can be activated from a
state other than PO

ctl: (not (cEBike.PO >0)) until cEBike.PC
>0

F

12 PC can activate PC, PO or BR
only

ltl: always (cEBike.PC >0 implies (next
((((cEBike.PC >0) or (cEBike.PO >0)) or

(cEBike.BR >0)))))

T

– the set of states is Q = {PO,PA, PC,CC,BR};

– the set of inputs is Σ = {pa, cc, pc, br, brc, pac, ccc, pcc}

– there are no explicit outputs; in order to make the transition observable we
consider the output to be the next state for each transition, so the set of
outputs is the same as the set of states, Γ = Q.

10 R. Lefticaru, M.E. Bakir, S. Konur, M. Stannett, F. Ipate

– the memory is M = {m}, m ∈ {λ, pa2cc, po2cc} (one memory variable m,
where λ represents an undefined value, and pa2cc, po2cc are used to record
the last state before enabling the CC feature);

– each processing function is determined by a rewriting rule in tEBike, e.g.,
the PO, pa → PA rule induces the processing function φPO,pa,PA defined
by φPO,pa,PA(m, pa) = (PA,m), m ∈ M ; the PO, cc → CC, po2cc rule
induces processing function φPO,cc,CC(m, cc) = (CC, po2cc), m ∈ M ; the
CC, ccc, po2cc → PO rule induces processing function φCC,ccc,PO(po2cc, ccc)
= (PO, λ);

– the next-state function is defined by F (q, φq,σ,q′) = q′ for every q, q′ ∈ Q,
σ ∈ Σ such that φq,σ,q′ ∈ Φ;

– the initial state is q0 = PO;
– the initial memory is m0 = λ.

Now, suppose we want to test an implementation of a system specified as
an SXM. The testing techniques presented in [12, 14] generate test suites that
guarantee that the implementation conforms to the model, provided that some
design for test conditions are satisfied and the tester is able to estimate the
maximum number of states the implementation may have. We denote by β the
difference between this estimated upper bound on the number of states of the
implementation under test and the number of states of the model.

In order to generate a test suite from a SXM, two set of paths from the associ-
ated automaton will have to be constructed: a state cover and a characterisation
set.

A transition cover of a SXM Z is a set S ⊆ Φ∗ such that for every state
q ∈ Q of Z there is p ∈ S such that p reaches state q, i.e. F ∗(q0, p) = q. In our
example, the empty sequence λ reaches the initial state PO, φPO,pa,PA reaches
PA, φPO,pc,PC reaches PC, φPO,cc,CC reaches CC and φPO,br,BR reaches BR,
thus S = {λ, φPO,pa,PA, φPO,pc,PC , φPO,cc,CC , φPO,br,BR} is a state cover of Z.

A characterization set of a SXM Z is a set W ⊆ Φ∗ such that for every two
distinct states q, q′ ∈ Q there is p ∈ W such that p distinguishes between q and
q′, i.e F ∗(q, p) is defined and F ∗(q′, p) is not defined or F ∗(q, p) is not defined and
F ∗(q′, p) is defined. In our example, φPO,br,BR distinguishes PO from any other
state of Z, φPA,br,BR distinguishes PA from any other state of Z, φPC,br,BR

distinguishes PC from any other state of Z and φCC,br,PO distinguishes CC

from any other state of Z, so W = {φPO,br,BR, φPA,br,BR, φPC,br,BR, φCC,br,PO}
is a characterization set of Z. Once a transition cover and a characterization set
have been constructed, the test suite is given by the formula

S(Φ0 ∪ Φ1 ∪ . . . ∪ Φβ+1)W,

where S is a transition cover, W is a characterization set, and (as already noted)
β denotes the difference between the estimated maximum number of states of
the implementation under test and the number of states of the model.

In order for the successful application of the test suite to guarantee the
conformance of the implementation to the model, the SXM model has to satisfy
two design for test conditions: output-distinguishability and input-completeness.

Modelling and Validating an Engineering Application in Kernel P Systems 11

The set of processing functions Φ is called output-distinguishable if, for every two
processing functions φ1, φ2 ∈ Φ, if there exists m,m1,m2 ∈ M , σ ∈ Σ, γ ∈ Γ

such that φ1(m,σ) = (γ,m1) and φ2(m,σ) = (γ,m2) then φ1 = φ2. In our
example, Φ is not output-distinguishable since, for example, both φPO,br,BR and
φPA,br,BR produce the output BR while processing any memory value m and
input br. The set Φ can be transformed into one that is output-distinguishable
by suitably augmenting the output alphabet. In our running example we may
enlarge Γ by considering as output for each transition a pair formed by both the
current and the next state of the transition.

The set of processing functions Φ is called input-complete if, for every pro-
cessing function φ ∈ Φ and every memory m ∈ M , there exists an input symbol
σ ∈ Σ such that (m,σ) is in the domain of φ. In our running example, Φ is not
input-complete since, for example, for φCC,br,PA ∈ Φ and po2cc ∈ M , there is
no input σ ∈ Σ such that (po2cc, σ) is in the domain of φCC,br,PA. The set Φ

can be transformed into one that is input-complete by suitably augmenting the
input alphabet and the processing functions. In our running example, φCC,br,PA

can be augmented by introducing an extra input symbol, say σe, and setting
φCC,br,PA(po2cc, σe) = (λ, PA). Naturally, the extra inputs, outputs and transi-
tions will be removed after testing has been completed.

6 Conclusions and Further Work

In this paper, we have presented our current work, focusing on an application of
membrane computing to modelling and analysing engineering systems. As our
initial attempt, we have considered the cruise control system of e-bike as our case
study. We have modelled an e-bike cruise control system using kernel P systems
and validated its behaviour using the kPWorkbench verification environment.
We have also illustrated how the automata and X-machine testing methodologies
can be applied on the kP model of the cruise control system.

As future work, we are planning to show how more complex engineering
problems can be solved, tested and verified by using kP systems.

Acknowledgements

The work of SK is supported by Innovate UK (project no: KTP010551). MB is
supported by a PhD studentship provided by the Turkey Ministry of Education.
FI is supported by a grant of the Romanian National Authority for Scientific
Research, CNCS-UEFISCDI, project number PN-III-P4-ID-PCE-2016-0210.

References

1. Bakir, M.E., Ipate, F., Konur, S., Mierla, L., Niculescu, I.: Extended simulation
and verification platform for kernel P systems. In: Membrane Computing - 15th
International Conference, CMC 2014. pp. 158–178 (2014)

12 R. Lefticaru, M.E. Bakir, S. Konur, M. Stannett, F. Ipate

2. Bakir, M.E., Konur, S., Gheorghe, M., Niculescu, I., Ipate, F.: High performance
simulations of kernel P systems. In: 2014 IEEE International Conference on High
Performance Computing and Communications, HPCC 2014. pp. 409–412 (2014)

3. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An opensource tool for symbolic model
checking. In: Computer Aided Verification, 14th International Conference, CAV
2002, Proceedings. pp. 359–364 (2002)

4. Coakley, S., Gheorghe, M., Holcombe, M., Chin, S., Worth, D., Greenough, C.:
Exploitation of high performance computing in the FLAME agent-based simu-
lation framework. In: 14th IEEE International Conference on High Performance
Computing and Communication, HPCC 2012. pp. 538–545 (2012)

5. Dragomir, C., Ipate, F., Konur, S., Lefticaru, R., Mierla, L.: Model checking kernel
P systems. In: Membrane Computing - 14th International Conference, CMC 2013.
pp. 151–172 (2013)

6. Gheorghe, M., Ceterchi, R., Ipate, F., Konur, S.: Kernel P systems modelling,
testing and verification - sorting case study. In: Membrane Computing - 17th In-
ternational Conference, CMC 2016. pp. 233–250 (2016)

7. Gheorghe, M., Ceterchi, R., Ipate, F., Konur, S., Lefticaru, R.: Kernel P systems:
from modelling to verification and testing. Theoretical Computer Science (accepted
for publication), http://hdl.handle.net/10454/11720

8. Gheorghe, M., Ipate, F.: On testing P systems. In: Membrane Computing - 9th
International Workshop, WMC 2008. pp. 204–216 (2008)

9. Gheorghe, M., Ipate, F., Dragomir, C., Mierla, L., Valencia-Cabrera, L., Garćıa-
Quismondo, M., Pérez-Jiménez, M.J.: Kernel P Systems - Version I. Eleventh
Brainstorming Week on Membrane Computing (11BWMC) pp. 97–124 (2013)

10. Gheorghe, M., Konur, S., Ipate, F., Mierla, L., Bakir, M.E., Stannett, M.: An
integrated model checking toolset for kernel P systems. In: Membrane Computing
- 16th International Conference, CMC 2015. pp. 153–170 (2015)

11. Holcombe, M.: X-machines as a basis for dynamic system specification. Software
Engineering Journal 3(2), 69–76 (1988)

12. Holcombe, M., Ipate, F.: Correct Systems: Building a Business Process Solution.
Applied computing, Springer-Verlag (1998)

13. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engi-
neering 23(5), 275–295 (1997)

14. Ipate, F., Holcombe, M.: An integration testing method that is proved to find all
faults. International Journal of Computer Mathematics 63(3-4), 159–178 (1997)

15. Konur, S.: An event-based fragment of first-order logic over intervals. Journal of
Logic, Language and Information 20(1), 49–68 (2011)

16. Konur, S.: Specifying safety-critical systems with a decidable duration logic. Sci-
ence of Computer Programming 80(Part B), 264 – 287 (2014)

17. Konur, S., Fisher, M.: A roadmap to pervasive systems verification. The Knowledge
Engineering Review 30(3), 324341 (2015)

18. Konur, S., Gheorghe, M., Dragomir, C., Mierla, L., Ipate, F., Krasnogor, N.: Qual-
itative and quantitative analysis of systems and synthetic biology constructs using
P systems. ACS Synthetic Biology 4(1), 83–92 (2015)

19. Konur, S., Kiran, M., Gheorghe, M., Burkitt, M., Ipate, F.: Agent-based high-
performance simulation of biological systems on the GPU. In: 17th IEEE Interna-
tional Conference on High Performance Computing and Communications, HPCC
2015. pp. 84–89 (2015)

Modelling and Validating an Engineering Application in Kernel P Systems 13

20. Lefticaru, R., Konur, S., Yildirim, U., Uddin, A., Campean, F., Gheorghe, M.:
Towards an integrated approach to verification and model-based testing in sys-
tem engineering. In: The International Workshop on Engineering Data- & Model-
driven Applications (EDMA-2017) within the IEEE International Conference on
Cyber, Physical and Social Computing (CPSCom). pp. 131–138 (2017), http:

//hdl.handle.net/10454/12322

21. Păun, G.: Computing with membranes. Journal of Computer and System Sciences
61(1), 108–143 (2000)

22. The P systems website. http://ppage.psystems.eu, [Online; accessed 30/10/17]
23. Sanassy, D., Fellermann, H., Krasnogor, N., Konur, S., Mierla, L., Gheorghe, M.,

Ladroue, C., Kalvala, S.: Modelling and stochastic simulation of synthetic biolog-
ical boolean gates. In: 2014 IEEE International Conference on High Performance
Computing and Communications, HPCC 2014, Paris, France, August 20-22, 2014.
pp. 404–408 (2014)

24. Varadarajan, A.V., Romijn, M., Oosthoek, B., van de Mortel-Fronczak, J.M., Bei-
jer, J.: Development and validation of functional model of a cruise control system.
In: Proceedings of the 13th International Workshop on Formal Engineering Ap-
proaches to Software Components and Architectures. pp. 45–58. EPTCS (2016)

