2,973 research outputs found

    Multiplicative random walk Metropolis-Hastings on the real line

    Full text link
    In this article we propose multiplication based random walk Metropolis Hastings (MH) algorithm on the real line. We call it the random dive MH (RDMH) algorithm. This algorithm, even if simple to apply, was not studied earlier in Markov chain Monte Carlo literature. The associated kernel is shown to have standard properties like irreducibility, aperiodicity and Harris recurrence under some mild assumptions. These ensure basic convergence (ergodicity) of the kernel. Further the kernel is shown to be geometric ergodic for a large class of target densities on R\mathbb{R}. This class even contains realistic target densities for which random walk or Langevin MH are not geometrically ergodic. Three simulation studies are given to demonstrate the mixing property and superiority of RDMH to standard MH algorithms on real line. A share-price return data is also analyzed and the results are compared with those available in the literature

    An ultra scale-down method to investigate monoclonal antibody processing during tangential flow filtration (TFF) using ultrafiltration membranes

    Get PDF
    The availability of material for experimental studies is a key constraint in the development of full-scale bioprocesses. This is especially true for the later stages in a bioprocess sequence such as purification and formulation, where the product is at a relatively high concentration and traditional scale-down models can require significant volumes. Using a combination of critical flow regime analysis, bioprocess modelling and experimentation, ultra scale-down (USD) methods can yield bioprocess information using only millilitre quantities prior to embarking on highly demanding full-scale studies. In this study the performance of a pilot-scale tangential flow filtration (TFF) system based on a membrane flat-sheet cassette using pumped flow was predicted by devising an USD device comprising a stirred cell using a rotating disc. The USD device operates with just 2.1 cm2 of membrane area and for example just 1.7 mL of feed for diafiltration studies. The novel features of the design involve optimisation of the disc location and the membrane configuration to yield an approximately uniform shear rate. This is as characterised using computational fluid dynamics for a defined layer above the membrane surface. A pilot-scale TFF device operating at ~500-fold larger feed volume and membrane area was characterised in terms of the shear rate derived from flow rate-pressure drop relationships for the cassette. Good agreement was achieved between the USD and TFF devices for the flux and resistance values at equivalent average shear rates for a monoclonal antibody diafiltration stage. This article is protected by copyright. All rights reserved

    Chemo-biocatalytic one-pot two-step conversion of cyclic amine to lactam using whole cell monoamine oxidase

    Get PDF
    BACKGROUND: Most biocatalysts currently involved in one‐pot chemoenzymatic cascades are pure enzymes, while whole cells and crude enzyme extracts remain unexplored. This work aims to develop a chemo‐biocatalytic one‐pot two‐step system involving whole cell monoamine oxidase (MAO, EC 1.4.3.4) coupled with a Cu‐based oxidative system (CuI/H2O2) for the transformation of 1,2,3,4‐tetrahydroisoquinoline (THIQ) to 3,4‐dihydroisoquinolin‐1(2H)‐one (DHIO). RESULTS: MAO‐N variants D9 and D11 were tested as whole cell and crude lysate biocatalysts for biological oxidation. Whole Escherichia coli OverExpress C43(DE3) cells expressing MAO‐N D9 showed the best performance (Vmax = 36.58 mmol L−1 h−1, KM = 8.124 mmol L−1, maximum specific productivity 89.3 ÎŒmol min−1 g−1DCW) and were employed in combination with CuI/H2O2 in a sequential one‐pot two‐step process. The biotransformation was scaled‐up to the initial volume of 25 mL and after triple THIQ feeding, 48.2 mmol L−1 of the intermediate 3,4‐dihydroisoquinoline (DHIQ) was obtained with a yield of 71.3%. Afterwards, chemical catalysts (1 mol% CuI and 10 eq. H2O2) were added to the biologically produced DHIQ, which was transformed to ∌30 mmol L−1 DHIO at 69.4% overall yield. CONCLUSION: As MAO‐N variants have wide substrate specificity, this work broadens the portfolio of one‐pot chemoenzymatic processes employing whole cell biocatalysts, representing an alternative to using pure enzymes

    Identification and validation of a QTL influencing bitter pit symptoms in apple (Malus x domestica)

    Get PDF
    Bitter pit is one of the most economically important physiological disorders affecting apple fruit production, causing soft discrete pitting of the cortical flesh of the apple fruits which renders them unmarketable. The disorder is heritable; however, the environment and cultural practices play a major role in expression of symptoms. Bitter pit has been shown to be controllable to a certain extent using calcium sprays and dips; however, their use does not entirely prevent the incidence of the disorder. Previously, bitter pit has been shown to be controlled by two dominant genes, and markers on linkage group 16 of the apple genome were identified that were significantly associated with the expression of bitter pit symptoms in a genome-wide association study. In this investigation, we identified a major QTL for bitter pit defined by two microsatellite (SSR) markers. The association of the SSRs with the bitter pit locus, and their ability to predict severe symptom expression, was confirmed through screening of individuals with stable phenotypic expression from an additional mapping progeny. The data generated in this current study suggest a two gene model could account for the control of bitter pit symptom expression; however, only one of the loci was detectable, most likely due to dominance of alleles carried by both parents of the mapping progeny used. The SSR markers identified are cost-effective, robust and multi-allelic and thus should prove useful for the identification of seedlings with resistance to bitter pit using marker-assisted selection in apple breeding programs

    Evolutionary relationships between Rhynchosporium lolii sp. nov. and other Rhynchosporium species on grass.

    Get PDF
    Copyright: 2013 King et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedThe fungal genus Rhynchosporium (causative agent of leaf blotch) contains several host-specialised species, including R. commune (colonising barley and brome-grass), R. agropyri (couch-grass), R. secalis (rye and triticale) and the more distantly related R. orthosporum (cocksfoot). This study used molecular fingerprinting, multilocus DNA sequence data, conidial morphology, host range tests and scanning electron microscopy to investigate the relationship between Rhynchosporium species on ryegrasses, both economically important forage grasses and common wild grasses in many cereal growing areas, and other plant species. Two different types of Rhynchosporium were found on ryegrasses in the UK. Firstly, there were isolates of R. commune that were pathogenic to both barley and Italian ryegrass. Secondly, there were isolates of a new species, here named R. lolii, that were pathogenic only to ryegrass species. R. lolii was most closely related to R. orthosporum, but exhibited clear molecular, morphological and host range differences. The species was estimated to have diverged from R. orthosporum ca. 5735 years before the present. The colonisation strategy of all of the different Rhynchosporium species involved extensive hyphal growth in the sub-cuticular regions of the leaves. Finally, new species-specific PCR diagnostic tests were developed that could distinguish between these five closely related Rhynchosporium species.Peer reviewedFinal Published versio

    Uncemented and cemented primary total hip arthroplasty in the Swedish Hip Arthroplasty Register: Evaluation of 170,413 operations

    Get PDF
    BACKGROUND AND PURPOSE: Since the introduction of total hip arthroplasty (THA) in Sweden, both components have most commonly been cemented. A decade ago the frequency of uncemented fixation started to increase, and this change in practice has continued. We therefore analyzed implant survival of cemented and uncemented THA, and whether the modes of failure differ between the two methods of fixation. PATIENTS AND METHODS: All patients registered in the Swedish Hip Arthroplasty Register between 1992 and 2007 who received either totally cemented or totally uncemented THA were identified (n = 170,413). Kaplan-Meier survival analysis with revision of any component, and for any reason, as the endpoints was performed. Cox regression models were used to calculate risk ratios (RRs) for revision for various reasons, adjusted for sex, age, and primary diagnosis. RESULTS: Revision-free 10-year survival of uncemented THA was lower than that of cemented THA (85% vs. 94%, p < 0.001). No age or diagnosis groups benefited from the use of uncemented fixation. Cox regression analysis confirmed that uncemented THA had a higher risk of revision for any reason (RR = 1.5, 95% CI: 1.4-1.6) and for aseptic loosening (RR = 1.5, CI: 1.3-1.6). Uncemented cup components had a higher risk of cup revision due to aseptic loosening (RR = 1.8, CI: 1.6-2.0), whereas uncemented stem components had a lower risk of stem revision due to aseptic loosening (RR = 0.4, CI: 0.3-0.5) when compared to cemented components. Uncemented stems were more frequently revised due to periprosthetic fracture during the first 2 postoperative years than cemented stems (RR = 8, CI: 5-14). The 5 most common uncemented cups had no increased risk of revision for any reason when compared with the 5 most commonly used cemented cups (RR = 0.9, CI: 0.6-1.1). There was no significant difference in the risk of revision due to infection between cemented and uncemented THA. INTERPRETATION: Survival of uncemented THA is inferior to that of cemented THA, and this appears to be mainly related to poorer performance of uncemented cups. Uncemented stems perform better than cemented stems; however, unrecognized intraoperative femoral fractures may be an important reason for early failure of uncemented stems. The risk of revision of the most common uncemented cup designs is similar to that of cemented cups, indicating that some of the problems with uncemented cup fixation may have been solved.Open Access - This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the source is credited

    Enforced PGC-1α expression promotes CD8 T cell fitness, memory formation and antitumor immunity.

    Get PDF
    Memory CD8 T cells can provide long-term protection against tumors, which depends on their enhanced proliferative capacity, self-renewal and unique metabolic rewiring to sustain cellular fitness. Specifically, memory CD8 T cells engage oxidative phosphorylation and fatty acid oxidation to fulfill their metabolic demands. In contrast, tumor-infiltrating lymphocytes (TILs) display severe metabolic defects, which may underlie their functional decline. Here, we show that overexpression of proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), the master regulator of mitochondrial biogenesis (MB), favors CD8 T cell central memory formation rather than resident memory generation. PGC-1α-overexpressing CD8 T cells persist and mediate more robust recall responses to bacterial infection or peptide vaccination. Importantly, CD8 T cells with enhanced PGC-1α expression provide stronger antitumor immunity in a mouse melanoma model. Moreover, TILs overexpressing PGC-1α maintain higher mitochondrial activity and improved expansion when rechallenged in a tumor-free host. Altogether, our findings indicate that enforcing mitochondrial biogenesis promotes CD8 T cell memory formation, metabolic fitness, and antitumor immunity in vivo
    • 

    corecore