241 research outputs found

    Sodium intake in men and potassium intake in women determine the prevalence of metabolic syndrome in Japanese hypertensive patients: OMEGA Study

    Get PDF
    Dietary intake affects hypertension and metabolic syndrome (MS) and their management. In Japanese hypertensive patients, little evidence exists regarding the relation between diet and MS. A self-administered lifestyle questionnaire was completed by each patient at the baseline. Three dietary scores were calculated for each patient: sodium intake, potassium intake and soybean/fish intake. The relationships between dietary scores and systolic blood pressure (SBP) and diastolic blood pressure (DBP) were analyzed by multiple regression analysis. The relation between dietary intake of sodium, potassium and soybean/fish, and the presence of MS was evaluated by the Mantel–Haenszel test. A total of 9585 hypertensive patients (mean age, 64.9 years; women, 51.4%) were included in this sub-analysis. High sodium intake was significantly related to increased SBP (P=0.0003) and DBP (P=0.0130). Low potassium intake was significantly related to increased SBP (P=0.0057) and DBP (P=0.0005). Low soybean/fish intake was significantly related to increased SBP (P=0.0133). A significantly higher prevalence of MS was found in men in the highest quartile of sodium intake compared with the lower quartiles (P=0.0026) and in women in the lowest quartile of potassium intake compared with the higher quartiles (P=0.0038). A clear relation between dietary habits and blood pressure was found in Japanese hypertensive patients using a patient-administered questionnaire. Sodium and potassium intake affect MS prevalence. Dietary changes are warranted within hypertension treatment strategies

    Metabolic Effects of Krill Oil are Essentially Similar to Those of Fish Oil but at Lower Dose of EPA and DHA, in Healthy Volunteers

    Get PDF
    The purpose of the present study is to investigate the effects of krill oil and fish oil on serum lipids and markers of oxidative stress and inflammation and to evaluate if different molecular forms, triacylglycerol and phospholipids, of omega-3 polyunsaturated fatty acids (PUFAs) influence the plasma level of EPA and DHA differently. One hundred thirteen subjects with normal or slightly elevated total blood cholesterol and/or triglyceride levels were randomized into three groups and given either six capsules of krill oil (N = 36; 3.0 g/day, EPA + DHA = 543 mg) or three capsules of fish oil (N = 40; 1.8 g/day, EPA + DHA = 864 mg) daily for 7 weeks. A third group did not receive any supplementation and served as controls (N = 37). A significant increase in plasma EPA, DHA, and DPA was observed in the subjects supplemented with n-3 PUFAs as compared with the controls, but there were no significant differences in the changes in any of the n-3 PUFAs between the fish oil and the krill oil groups. No statistically significant differences in changes in any of the serum lipids or the markers of oxidative stress and inflammation between the study groups were observed. Krill oil and fish oil thus represent comparable dietary sources of n-3 PUFAs, even if the EPA + DHA dose in the krill oil was 62.8% of that in the fish oil

    Common genetic variants on chromosome 9p21 are associated with myocardial infarction and type 2 diabetes in an Italian population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A genomic region on chromosome 9p21 has been identified as closely associated with increased susceptibility to coronary artery disease (CAD) and to type 2 diabetes (T2D) although the evidence suggests that the genetic variants within chromosome 9p21 that contribute to CAD are different from those that contribute to T2D.</p> <p>We carried out an association case-control study in an Italian population to test the association between two single nucleotide polymorphisms (SNPs) on the 9p21 locus, rs2891168 and rs10811661, previously reported by the PROCARDIS study, and respectively myocardial infarction (MI) and T2D. Our aim was to confirm the previous findings on a larger sample and to verify the independence of their susceptibility effects: rs2891168 associated with MI but not with T2D and rs10811661 associated with T2D but not with MI.</p> <p>Methods</p> <p>Genomic DNA samples of 2407 Italians with T2D (602 patients), who had had a recent MI (600), or had both diseases (600) and healthy controls (605) were genotyped for the two SNPs. The genotypes were determined by allelic discrimination using a fluorescent-based TaqMan assay.</p> <p>Results</p> <p>SNP rs2891168 was associated with MI, but not with T2D and the G-allele odds ratio (OR) was 1.20 (95% CI 1.02-1.41); SNP rs10811661 was associated with T2D, but not with MI, and the T-allele OR was 1.27 (95% CI 1.04-1.55). ORs estimates from the present study and the PROCARDIS study were pooled and confirmed the previous findings, with greater precision.</p> <p>Conclusions</p> <p>Our replication study showed that rs2891168 and rs10811661 are independently associated respectively with MI and T2D in an Italian population. Pooling our results with those reported by the PROCARDIS group, we also obtained a significant result of association with diabetes for rs10811661 in the European population.</p

    Modulating an oxidative-inflammatory cascade: potential new treatment strategy for improving glucose metabolism, insulin resistance, and vascular function

    Get PDF
    Type 2 diabetes is a result of derangement of homeostatic systems of metabolic control and immune defense. Increases in visceral fat and organ adipose, environmental factors and genetic predisposition create imbalances of these homeostatic mechanisms, ultimately leading to a condition in which the oxidative environment cannot be held in check. A significant imbalance between the production of reactive oxygen species and antioxidant defenses, a condition called to oxidative stress, ensues, leading to alterations in stress-signalling pathways and potentially end-organ damage. Oxidative stress and metabolic inflammation upregulate the expression pro-inflammatory cytokines, including tissue necrosis factor alpha, monocyte chemoattractant protein-1 and interleukin-6, as well as activating stress-sensitive kinases, such as c-Jun N-terminal kinase (JNK), phosphokinase C isoforms, mitogen-activated protein kinase and inhibitor of kappa B kinase. The JNK pathway (specifically JNK-1) appears to be a regulator that triggers the oxidative-inflammation cascade that, if left unchecked, can become chronic and cause abnormal glucose metabolism. This can lead to insulin resistance and dysfunction of the vasculature and pancreatic β-cell. The series of events set in motion by the interaction between metabolic inflammation and oxidative stress constitutes an ‘oxidative-inflammatory cascade’, a delicate balance driven by mediators of the immune and metabolic systems, maintained through a positive feedback loop. Modulating an oxidative-inflammation cascade may improve glucose metabolism, insulin resistance and vascular function, thereby slowing the development and progression to cardiovascular diseases and type 2 diabetes

    Use of biological based therapy in patients with cardiovascular diseases in a university-hospital in New York City

    Get PDF
    BACKGROUND: The use of complementary and alternative products including Biological Based Therapy (BBT) has increased among patients with various medical illnesses and conditions. The studies assessing the prevalence of BBT use among patients with cardiovascular diseases are limited. Therefore, an evaluation of BBT in this patient population would be beneficial. This was a survey designed to determine the effects of demographics on the use of Biological Based Therapy (BBT) in patients with cardiovascular diseases. The objective of this study was to determine the effect of the education level on the use of BBT in cardiovascular patients. This survey also assessed the perceptions of users regarding the safety/efficacy of BBT, types of BBT used and potential BBT-drug interactions. METHOD: The survey instrument was designed to assess the findings. Patients were interviewed from February 2001 to December 2002. 198 inpatients with cardiovascular diseases (94 BBT users and 104 non-users) in a university hospital were included in the study. RESULTS: Users had a significantly higher level of education than non-users (college graduate: 28 [30%] versus 12 [12%], p = 0.003). Top 10 BBT products used were vitamin E [41(43.6%)], vitamin C [30(31.9%)], multivitamins [24(25.5%)], calcium [19(20.2%)], vitamin B complex [17(18.1%)], fish oil [12(12.8%)], coenzyme Q10 [11(11.7%)], glucosamine [10(10.6%)], magnesium [8(8.5%)] and vitamin D [6(6.4%)]. Sixty percent of users' physicians knew of the BBT use. Compared to non-users, users believed BBT to be safer (p < 0.001) and more effective (p < 0.001) than prescription drugs. Forty-two potential drug-BBT interactions were identified. CONCLUSION: Incidence of use of BBT in cardiovascular patients is high (47.5%), as is the risk of potential drug interaction. Health care providers need to monitor BBT use in patients with cardiovascular diseases
    corecore