285 research outputs found

    Vortex and critical fields in charged Bose liquids and unconventional superconductors

    Get PDF
    A single vortex in the charged Bose gas (CBG) has a charged core and its profile different from the vortex in neutral and BCS superfluids. Lower and upper critical fields of CBG are discussed. The unusual resistive upper critical field, Hc2(T), of many cuprates and a few other unconventional superconductors is described as the Bose-Einstein condensation field of preformed bosons-bipolarons. Its nonlinear temperature dependence follows from the scaling arguments. Exceeding the Pauli paramagnetic limit is explained. Controversy in the determination of Hc2(T) of cuprates from kinetic and thermodynamic measurements is addressed in the framework of the bipolaron theory.Comment: 12 pages, 3 figures, invited paper at the International Conference 'Vortex III', Crete (September 2003

    Quasicondensate and superfluid fraction in the 2D charged-boson gas at finite temperature

    Full text link
    The Bogoliubov - de Gennes equations are solved for the Coulomb Bose gas describing a fluid of charged bosons at finite temperature. The approach is applicable in the weak coupling regime and the extent of its quantitative usefulness is tested in the three-dimensional fluid, for which diffusion Monte Carlo data are available on the condensate fraction at zero temperature. The one-body density matrix is then evaluated by the same approach for the two-dimensional fluid with e^2/r interactions, to demonstrate the presence of a quasi-condensate from its power-law decay with increasing distance and to evaluate the superfluid fraction as a function of temperature at weak coupling.Comment: 9 pages, 2 figure

    Electromagnetic waves in an axion-active relativistic plasma non-minimally coupled to gravity

    Full text link
    We consider cosmological applications of a new self-consistent system of equations, accounting for a nonminimal coupling of the gravitational, electromagnetic and pseudoscalar (axion) fields in a relativistic plasma. We focus on dispersion relations for electromagnetic perturbations in an initially isotropic ultrarelativistic plasma coupled to the gravitational and axion fields in the framework of isotropic homogeneous cosmological model of the de Sitter type. We classify the longitudinal and transversal electromagnetic modes in an axionically active plasma and distinguish between waves (damping, instable or running), and nonharmonic perturbations (damping or instable). We show that for the special choice of the guiding model parameters the transversal electromagnetic waves in the axionically active plasma, nonminimally coupled to gravity, can propagate with the phase velocity less than speed of light in vacuum, thus displaying a possibility for a new type of resonant particle-wave interactions.Comment: 19 pages, 9 figures, published versio

    JINR-IAP FEM oscillator with Bragg resonator

    No full text
    A FEM-oscillator with a reversed guide magnetic field and a Bragg resonator as a RF radiation source for collider applications was studied. The configuration with a step of the corrugation phase is proved to be advantageous. It possesses such features as a high efficiency, precise tunability of the operating frequency and a narrow spectral band. It is demonstrated experimentally that such an oscillator is capable of operating at frequencies of ~30 GHz in single-mode regime with the frequency tuning in interval up to 6%. Frequency and spectrum measurements have been performed with precision of ~0.1%
    corecore