1,274 research outputs found

    SWARM Optimization of Force Model Parameters in Micromilling

    Get PDF
    Because of the improvement of machine-tool and tool performances in micro cutting field, the interest on these processes is increasing. Therefore, researchers involved in micro manufacturing processes focused their attention on these types of processes with the aim of improving the knowledge on the phenomena occurring during micro cutting operations. The objective of this work is to develop a modelling procedure for forecasting cutting forces in micromilling considering the tool run-out and the cutting tool geometry. The designed modelling procedure combines information coming from a force model, an optimization strategy and some experimental tests. The implemented force model is based on specific cutting pressure and actual instantaneous chip section. The tool run-out and the cutting tool geometry were considered in the analytical model. The adopted optimization strategy was based on the Particles Swarm strategy due to its suitability in solving analytical non-linear models. The experimental tests consisted in realizing micro slots on a sample made of Ti6Al4V. The comparison between experimental and analytical data demonstrates the good ability of the proposed procedure in correctly defining the model parameters

    Locally triggered seismicity in the central Swiss Alps following the large rainfall event of August 2005

    Get PDF
    In 2005 August, an unusual series of 47 earthquakes occurred over a 12-hr period in central Switzerland. The earthquakes occurred at the end of 3-d period of intensive rainfall, with over 300 mm of precipitation. The highest seismicity occurred as two distinct clusters in the region of Muotatal and Riemenstalden, Switzerland, a well-known Karst area that received a particularly large amount of rainfall. The large increase in seismicity, compared to the background, and the short time delay between the onset of the intense rainfall and the seismicity strongly suggest that earthquakes were triggered by rainfall. In our preferred model, an increase in fluid pressure at the surface due to a large amount of rain leads to a local increase in pore fluid pressure at depth. The increase in pore fluid pressure will reduce the shear strength of a porous medium by counteracting normal stress and, at the end, provoke failure. The series of triggered earthquakes in central Switzerland occurred in regions that have been seismically active in the past, showing similar hypocentre locations and magnitudes. This suggests that these earthquakes occurred on existing faults that were critically stressed. We modelled the intense rainfall as a step increase in fluid pressure at the surface that migrates to greater depths following the solution of the one-dimensional diffusion equation in a homogeneous half space. This allowed us to estimate the hydraulic diffusivity by plotting triggered seismicity in a time-depth plot. We found values of hydraulic diffusivity in the range from 0.01 to 0.5 m2 s−1 for our study area. These values are in good agreement with previous studies on earthquakes that were triggered by fluids, supporting the idea that the observed earthquake series was triggered by the large amount of rainfal

    Near-infrared spectroscopy study of tourniquet-induced forearm ischaemia in patients with coronary artery disease

    Get PDF
    Near-Infrared Spectroscopy (NIR) can be employed to monitor local changes in haemodynamics and oxygenation of human tissues. A preliminary study has been performed in order to evaluate the NIRS transmittance response to induced forearm ischaemia in patients with coronary artery disease (CAD). The population consists in 40 patients with cardiovascular risk factors and angiographically documented CAD, compared to a group of 13 normal subjects. By inflating and subsequently deflating a cuff placed around the patient arm, an ischaemia has been induced and released, and the patients have been observed until recovery of the basal conditions. A custom LAIRS spectrometer (IRIS) has been used to collect the backscattered light intensities from the patient forearm throughout the ischaemic and the recovery phase. The time dependence of the near-infrared transmittance on the control group is consistent with the available literature. On the contrary, the magnitude and dynamics of the NIRS signal on the CAD patients show deviations from the documented normal behavior, which can be tentatively attributed to abnormal vessel stiffness. These preliminary results, while validating the performance of the IRIS spectrometer, are strongly conducive towards the applicability of the NIRS technique to ischaemia analysis and to endothelial dysfunction characterization in CAD patients with cardiovascular risk factors.Publisher PD

    Two-dimensional resonances in Alpine valleys identified from ambient vibration wavefields

    Get PDF
    Although numerical simulations have for long shown the importance of 2-D resonances in site effect estimations of sediment-filled valleys, this phenomenon is usually not taken into account by current hazard assessment techniques. We present an approach to identify the resonance behaviour of a typical Alpine valley by analysis of ambient noise recorded simultaneously on a dense array. The applicability of the method is evaluated further using synthetic ambient noise acquired with current 3-D numerical simulation techniques. Resonance frequencies of the fundamental mode SV and the fundamental and first higher mode of SH are identified from measured data with the reference station method, verifying results of previous studies. Patterns of spectral amplitude and phase behaviour obtained from observed and synthetic noise correlate well with properties expected for 2-D resonance. Application of a frequency-wavenumber technique shows that the noise wavefield is dominated by standing waves at low frequencies (0.25 to 0.50 Hz). The different 2-D resonance modes are creating prominent peaks in horizontal-to-vertical spectral ratios, which can not be interpreted in terms of 1-D resonance. We conclude that ambient noise records measured simultaneously on a linear array perpendicular to the valley axis may be used for identification of resonance modes in sediment-filled valley

    Driver roll speed influence in Ring Rolling process

    Get PDF
    Ring Rolling is an advanced local incremental forming technology to fabricate directly precise seamless ring-shape parts with various dimensions and materials. To produce a high-quality ring different speed laws should be defined: the speed laws of the Idle and Axial rolls must be set to control the ring cross section and the Driver roll angular velocity must be chosen to avoid too high localized deformation on the ring cross section. Usually, in industrial environment, a constant rotation is set for the Driver roll, but this approach does not guarantee a constant ring angular velocity because of its diameter expansion. In particular, the higher is the ring diameter the lower is its angular velocity. The main risk due to this constrain is the generation of a non-uniform ring geometry. An innovative approach is to design a Driver Roll speed law to obtain a constant ring angular velocity. In this paper a FEM approach was followed to investigate the Driver roll speed influence on the Ring Rolling process. Different Driver roll speed laws were tested starting from a model defined in an industrial plant. Results will be analyzed by a geometrical and physical point of view

    Process parameters effect on mechanical properties and fatigue behaviour of friction stir weld AA6060 joints

    Get PDF
    Friction stir welding (FSW) is the most remarkable welding technology that has been invented and developed in the last decade. It is a solid-state welding process in which a rotating tool is driven into the material and translated along the interface of two or more plates. This technology has been successfully used to join materials that are considered difficult to be welded by fusion welding methods. FSW has potentially significant applications in many industrial fields such as aerospace, automotive, and naval industry. Anyway, FSW technology requires a meticulous understanding of the process and consequent mechanical properties of the welds in order to be used in the production of high performance components. The present work deals with an experimental campaign aimed at the evaluation of the mechanical properties of AA6060 T6 friction stir welded joints. The butt joints obtained using two different tool geometries (standard and threaded) were performed by varying the welding parameters, namely, tool rotating speed and feed rate. The standard tool was a very simple device fabricated using AISI 1040 steel, with a flat shoulder and a cylindrical pin. The threaded tool was a more complex device based on two main components: a tool holder, with a flat shoulder, and a threaded probe obtained using a commercial thread forming tap. The quality of the joints was evaluated in terms of both tensile strength (UTS) and fatigue behavior. The study of axial pulsing fatigue properties required the fabrication of a specific testing device able to avoid parasite bending moments. In order to estimate the more efficient and effective tool type, the welding forces (axial and longitudinal) were also measured

    Locating the Nordstream explosions without a velocity model using polarization analysis

    Get PDF
    The seismic events that preceded the leaks in the Nordstream pipelines in the Baltic Sea have been interpreted as explosions on the seabed, most likely man-made. We use a polarization-based location method initially developed for marsquakes to locate the source region without a subsurface velocity model. We show that the 2 largest seismic events can be unambiguously attributed to the methane plumes observed on the sea surface. The two largest events can be located with this method, using 4 and 5 stations located around the source, with location uncertainties of 30km and 10x60km. We can further show that both events emitted seismic energy for at least ten minutes after the initial explosion, indicative of resonances in the water column or the depressurizing pipeline.Comment: 6 pages, 2 figures, submitted as fast report to Seismic

    A Raman spectroscopy bio-sensor for tissue discrimination in surgical robotics

    Get PDF
    We report the development of a fiber-based Raman sensor to be used in tumour margin identification during endoluminal robotic surgery. Although this is a generic platform, the sensor we describe was adapted for the ARAKNES (Array of Robots Augmenting the KiNematics of Endoluminal Surgery) robotic platform. On such a platform, the Raman sensor is intended to identify ambiguous tissue margins during robot-assisted surgeries. To maintain sterility of the probe during surgical intervention, a disposable sleeve was specially designed. A straightforward user-compatible interface was implemented where a supervised multivariate classification algorithm was used to classify different tissue types based on specific Raman fingerprints so that it could be used without prior knowledge of spectroscopic data analysis. The protocol avoids inter-patient variability in data and the sensor system is not restricted for use in the classification of a particular tissue type. Representative tissue classification assessments were performed using this system on excised tissue
    • 

    corecore