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S U M M A R Y
In 2005 August, an unusual series of 47 earthquakes occurred over a 12-hr period in central
Switzerland. The earthquakes occurred at the end of 3-d period of intensive rainfall, with over
300 mm of precipitation. The highest seismicity occurred as two distinct clusters in the region of
Muotatal and Riemenstalden, Switzerland, a well-known Karst area that received a particularly
large amount of rainfall. The large increase in seismicity, compared to the background, and the
short time delay between the onset of the intense rainfall and the seismicity strongly suggest
that earthquakes were triggered by rainfall. In our preferred model, an increase in fluid pressure
at the surface due to a large amount of rain leads to a local increase in pore fluid pressure at
depth. The increase in pore fluid pressure will reduce the shear strength of a porous medium by
counteracting normal stress and, at the end, provoke failure. The series of triggered earthquakes
in central Switzerland occurred in regions that have been seismically active in the past, showing
similar hypocentre locations and magnitudes. This suggests that these earthquakes occurred on
existing faults that were critically stressed. We modelled the intense rainfall as a step increase
in fluid pressure at the surface that migrates to greater depths following the solution of the
one-dimensional diffusion equation in a homogeneous half space. This allowed us to estimate
the hydraulic diffusivity by plotting triggered seismicity in a time–depth plot. We found values
of hydraulic diffusivity in the range from 0.01 to 0.5 m2 s−1 for our study area. These values
are in good agreement with previous studies on earthquakes that were triggered by fluids,
supporting the idea that the observed earthquake series was triggered by the large amount of
rainfall.
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I N T RO D U C T I O N

Fluids play an important role in triggering local earthquakes. There

are a number of examples, where changes in pore fluid pressure, ei-

ther natural or man-made, triggered earthquakes. This process is also

known as hydroseismicity. Well-known examples of hydroseismic-

ity include seismicity induced by reservoir filling (Talwani & Acree

1984; Gupta 2002), or by forced fluid injection at depth (Aki et al.
1982; Zoback & Harjes 1997; Phillips 2000). Examples of naturally

induced changes in pore pressure that lead to earthquake triggering

are rare and subtle. Periods of elevated seismicity induced by sea-

sonal groundwater recharge (Roth et al. 1992; Saar & Manga 2003)

or following intense rainfall are good examples of the latter (Jimenez

& Garcia-Fernandez 2000; Hainzl et al. 2006; Kraft et al. 2006). It

has been also suggested that aftershocks are driven fluid flow (Nur

& Booker 1972; Miller et al. 2004). Hydroseismicity may also be

caused by the passage of low-frequency, large-amplitude surface

waves of distant earthquakes, a phenomena called dynamic earth-

quake triggering (Husen et al. 2004; Prejean et al. 2004). Despite

the, usually, small magnitudes of triggered earthquakes, their study

can provide insights into the state of stress and into the hydraulic

properties of the uppermost crust.

In this study, we present observations on a series of local earth-

quakes in the central Alps, Switzerland that followed a period of

intense rainfall. During the time period August 19–August 23,

2005, some of the largest rainfall ever recorded occurred in central

Switzerland. Within 4 d, over 300 mm of rain felt over a wide region

in central Switzerland (Fig. 1). An unusual series of 47 earthquakes

occurred over a 12-hr period at the end of the rainfall event. Most of

the earthquakes clustered in a region around Lake Lucerne (Fig. 1),

which is a well-known Karst area in the central Alps of Switzerland.

We model the intense rainfall as a step increase in fluid pressure at

the surface that migrates to greater depths following the solution

of the 1-D diffusion equation in a homogeneous half space. This

allows us to estimate the hydraulic diffusivity by plotting triggered

seismicity in a time–depth plot. We find values of hydraulic diffu-

sivity in the range from 0.01 to 0.5 m2 s−1 for our study area. These

values are in good agreement with previous studies on hydroseis-

micity, supporting the idea that the observed earthquake series was

triggered by the large amount of rainfall.
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Locally triggered seismicity in the central Swiss Alps 1127

Figure 1. Cumulative rainfall (colour coded in online version) and observed seismicity (white circles) in Switzerland for the time period 08/19/2005–08/23/2005.

Size of circles is scaled by magnitude as indicated. Black rectangle outlines area shown in Fig. 2.

O B S E RVAT I O N S

Rainfall

Between August 19 and 23, 2005, a low-pressure system moved

northwards from the Gulf of Genoa, northern Italy, towards the east-

ern Alps, Austria. With the low-pressure system warm and moisture

air from the Mediterranean was moved across the Alps and back to

the Alps, where it was pushed against the northern Alps. This lead to

intense rainfall across central Switzerland, which set new records at

many sites of the Meteoswiss network, the Swiss Weather Service,

monitoring precipitation in this area. Within 48 hr over 150 mm

of rain was recorded. The statistical recurrence rate for such high

rainfall is more than 300 yr (Meteoswiss 2005, personal communi-

cation), which clearly emphasize the exceptionality of the amount of

rain recorded. On top of the large rainfall, soil in central Switzerland

was already saturated before the onset of the rain-event, due to an

unusual wet August. This lead to an immediate increase in discharge

rates of streams and rivers, which caused substantial flooding and

landslides in central Switzerland.

Meteoswiss operates three stations for continuous monitoring of

precipitation in the region around Lake Lucerne, central Switzer-

land. At all stations, data was taken automatically every hour. In this

study, we will show data of the station Altdorf, which is closest to the

observed clusters of earthquakes (Fig. 1). In addition to data from the

Meteoswiss, data are also available from two stations, Schlichenden

Brünnen and Twäreren, operated by the Hoelloch Cave Research

Association (Fig. 2). These stations monitor precipitation and dis-

charge (only Schlichenden Brünnen) at the Hoelloch cave, with its

estimated length of 190 km one of the largest caves in Karst ter-

rain in Europe (Boegli 1970). Both stations are close to the village

Muotathal, where we observe the most intense seismicity follow-

ing the rainfall. Fig. 3 compares precipitation for stations Twären,

Schlichenden Brünnen and Altdorf in the time period 08/19/2005 to

08/24/2005. All three stations show the same rainfall pattern with

a first, small, maximum in precipitation between 08/19/2005 and
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Figure 2. Observed seismicity (white circles) in the region of Lake Lucerne.

See Fig. 1 for location of area. Locations of meteorological stations, for which

data (rainfall and discharge) was available, are marked by white triangles.

Regions with highest seismicity (Riemenstalden and Muotathal) are labelled.

08/20/2005. The second phase started on 08/21/2005, which lasted

until 08/23/2005 with a small break in precipitation at the end of

day 08/21/2005. The maximum in precipitation is reached between

08/22/2005 and 08/23/2005 for stations Twäreren and Schlichenden

Brünnen; in Altdorf the peak in precipitation is reached at the end of

day 08/21/2005. The largest amount of precipitation was recorded at

station Twäreren, with more than 250 mm rain between 08/19/2005

and 08/24/2005 (Fig. 3); at stations Schlichenden Brünnen and

Aldorf a total of nearly 200 mm rain and 150 mm rain were recorded,

respectively. Since all three stations show the same characteristics

in precipitation, we decided to use data from Schlichenden Brünnen

to estimate the time lag between the onset of precipitation and seis-

micity. Station Schlichenden Brünnen is located close to the main

cluster of seismicity following the rainfall. In addition, discharge

data is also available for the same station.
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Figure 3. Precipitation (rainfall) at stations Schlichenden Brünnen (solid line), Twäreren (dashed line) and Altdorf (heavy dashed line) for time period

08/19/2005–08/25/2005. Data for Schlichenden Brünnen and Twäreren were taken at 30 min intervals; data for Altdorf were taken at hourly intervals. Stations

Schlichenden Brünnen and Twäreren are operated by the Hölloch Cave Research Association (Swiss Hydrological Survey 2007); station Altdorf is operated by

MeteoSwiss.
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Figure 4. Precipitation (dashed line) and discharge at station Schlichenden Brünnen operated by the Hölloch Cave Research Association (Swiss Hydrological

Survey 2007). Data was taken at 30 min intervals for the time period 08/19/2005–08/25/2005. Discharge data after 08/24/2005 is unreliable due to damage at

the station.

Among precipitation, the station Schlichenden Brunnen also

recorded discharge of the river Schlichenden Brunnen, which is

the main outflow of the Hoelloch cave (Fig. 4). Unfortunately,

the station was heavily damaged by the large amount of water, so

that discharge data is only reliable until 08/24/2005. The peak in

discharge occurred at the middle of day 08/23/2005, clearly de-

layed by a few hours compared to the maximum in precipitation

(Fig. 4). Using a total of 200 mm precipitation between 08/19/2005

and 08/23/2005 measured at station Schlichenden Brunnen and a

catchment area of 30 km2 for the Karst area that drains through

the Hoelloch cave (Wildberger and Baettig, in press) we estimate

a total volume of 6 Mio m3 of water that entered the Hoelloch

cave. Between 08/22/2005 and 08/23/2005, at the peak discharge,

about 2.5 Mio m3 of water were drained through Schlichenden

Brunnen. An additional 0.5–0.7 Mio m3 were likely drained through

secondary drainages that are not monitored (Wildberger and Baet-

tig, in press). Although our estimates are a rather crude ap-

proximation, the discrepancy between precipitation and drainage

suggests that a substantial part of the water infiltrated the uppermost

crust.

Seismicity

The Swiss Seismological Service operates a seismic network to

monitor ongoing seismicity in Switzerland. In 2005, the network

consisted of 36 digital stations, most of them equipped with broad-

band STS2 sensors. Data is recorded continuously and streamed in

real-time to the data centre of the Swiss Seismological Service in

Zurich, where it is routinely processed. For earthquake location,

a 3-D P-wave velocity model is used, which is based on avail-

able controlled-source seismological data and local earthquake data

(Husen et al. 2003). For S-wave arrivals a constant P- to S-wave

ratio of 1.71 is used. Hypocentre locations are determined using

the software package NonLinLoc (Lomax et al. 2000). NonLin-

Loc computes the posteriori probability density function (PDF)

using either a systematic grid-search on nested grids or a global
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importance sampling algorithm, called Oct-Tree. In this study, we

use the Oct-Tree importance sampling algorithm, which provides

accurate and efficient mapping of the PDF (Husen et al. 2003).

The PDF represents a complete, probabilistic solution to the earth-

quake location problem, including complete information on loca-

tion uncertainties and resolution (Lomax et al. 2000). Location

uncertainties can be either shown using density scatter clouds or

by the 68 per cent confidence ellipsoid (Husen et al. 2003). For

well-posed location problems, i.e. at least six observing stations

and an azimuthal gap <180◦, the 68 per cent confidence ellipsoid is

a good approximation to the true location uncertainties, which can

be highly irregular. In this study we will show the 68 per cent confi-

dence ellipsoid since all our hypocentre locations are relatively well

constrained.

Between 08/19/2005 and 08/23/2005 the Swiss Seismological

Service located 53 earthquakes in Switzerland and surrounding re-

gions (Fig. 1). Most of the earthquakes occurred in the region around

Lake Lucerne, which also received some of the highest rainfall. A

few earthquakes occurred in the region around Grindelwald, BE,

which also received a high amount of rainfall. Although rainfall

was as high, the region between Lake Lucerne and Grindelwald

was seismically quiet, except one earthquake that occurred close to

Brienz (Fig. 1). Local magnitudes of the earthquakes ranged from

1.0 to 2.4 (Figs 1 and 2); some of them were felt locally, indicating

very shallow focal depths. A few earthquakes occurred in regions

with low rainfall, which likely represent normal background seis-

micity (Fig. 1). In contrast, the Swiss Seismological Service located

five earthquakes between 08/14/2005 and 08/18/2005; none of them

occurred in central Switzerland.

Earthquakes in central Switzerland between 08/19/2005 and

08/23/2005 occurred preferentially within the Helvetic nappes

(Fig. 5). The Helvetic nappes originated from the margin of the

Eurasian continent, and have been folded extensively during crustal

shortening, that concentrated mainly along the Penninic frontal

thrust in the early Miocene (Schmid & Kissling 2000). The geology

of the Helvetic nappes is dominated by limestone sediments with

distinct signs of Karst formation (Schmid et al. 2004). For example,

one of the largest limestone caves in Europe, the Hoelloch cave,

is located in the region of Muotathal and Riemenstalden (Boegli

1970). In contrast, no earthquakes occurred in the Molasse basin of

the Alpine foreland, although the region close to the central Alps

received a substantial amount of rainfall (Fig. 1).

The highest seismicity occurred as two distinct clusters in the

region of Muotathal and Riemenstalden (Figs 2 and 6). Focal depths

of these earthquakes were shallow, between the surface and 5 km

depth. Most of the earthquakes, however, have large uncertainties

in focal depth due to a low number of observations, a consequence

of their small magnitudes. Only a few larger events with ML >

2.0 are fairly well constrained in focal depth (Fig. 6). Both regions,

Muotathal and Riemenstalden, have been seismically active in the

past. Seismicity following the rainfall occurred close to locations of

previous earthquakes (Fig. 6). Because seismicity in the region of

Muotathal and Riemenstalden clustered closely in time and space

we used waveform cross-correlation to identify clusters of similar

waveforms (Rowe et al. 2002). For Riemenstalden we found two dis-

tinct clusters of similar waveforms that contained 70 per cent of the

recorded seismicity; for Muotathal no clear clustering in waveforms

was found. The results suggest that in Riemenstalden two main

source regions were active, whereas for Muotathal either different

source regions were active or a few main source regions produced

events with different focal mechanisms. Given the tight clustering

in hypocentre locations for events in Muotathal the latter scenario
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Figure 5. Principal tectonic units of central Switzerland (modified from Schmid et al. 2004). White circles denote epicentre locations of earthquakes for the

time period 08/19/2005–08/23/2005. Size of circles is scaled by magnitude as indicated.
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Figure 6. Hypocentre locations (circles) of earthquakes in the time period

08/19/2005–08/25/2005 for regions (a) Muotathal and (b) Riemenstalden.

Circles are coded in grey colours (colour in online version) by time (hours

since 08/22/2005 12:00). Background seismicity (1999–2004) is shown with

open (grey in online version) circles. For a few representative examples un-

certainties in hypocentre locations are shown by the 68 per cent confidence

ellipsoid. See text for details on how hypocentre locations and confidence

ellipsoids were computed. Dashed lines in vertical depth sections mark aver-

age elevation of the surface at the epicentre locations. White triangle marks

station MUO of the Swiss Digital Seismological Network.

is likely. Unfortunately, the low number of observations does not

allow to compute reliable focal mechanisms for these events.

R E S U LT S

For both regions, Muotathal and Riemenstalden, the observed seis-

micity following the rainfall was unprecedented. Although both re-

gions are seismically active, the intensity of earthquake activity, i.e.

number of earthquakes per time, following the rainfall was unique

since 1999 (Fig. 7). Data before 1999 is difficult to compare with

due to a significant network upgrade that started in 1999. As a con-

sequence, sensitivity and hypocentre location accuracy was signifi-

cantly increased in the study region yielding data sets with different

magnitudes of completeness and hypocentral distributions prior and

after 1999. Starting 08/22/2005, 37 earthquakes could be located in

the Muotathal and Riemenstalden area over a 12-hr period. Given a

background rate of two earthquakes per day in all Switzerland, this

is equivalent to an increase in seismicity by a factor of roughly 400.

The large increase in seismicity and the short time delay between

the onset of the intense rainfall and the seismicity strongly sug-

gest that earthquakes were triggered by rainfall. Rainfall started on

08/19/2005 at 18:00; the first earthquakes occurred in the Muotathal

region on 08/22/2005 at 22:00 and on 08/23/2005 at 00:00 in the

Riemstaldental region (Fig. 7). This corresponds to a time delay

of 76 hr (=3.2 d) and 78 hr (=3.25 d) for the Muotathal region

and the Riemenstalden region, respectively. Time lags between the

onset of the triggering event and seismicity can range from a few

days for rainfall induced earthquakes to a few months for seismic-

ity induced by seasonal groundwater recharge. For example, trig-

gered seismicity following periods of intense rainfall in the Mount

Hohenstaufen region, SE Germany, was delayed on average by 10 d

(Kraft et al. 2006). For the eastern Swiss Alps, an earlier study of the

seasonal variation of seismicity found a time lag of about 2 months

between the maximum in water flux at the surface and the maximum

in earthquake activity per month (Roth et al. 1992). Another well

documented case of seismicity induced by seasonal groundwater

recharge at Mt Hood, Oregon, estimated a time lag of about 151 d

(Saar & Manga 2003). The situation at Mount Hohenstaufen shows

strong similarities to our observations. In both cases, periods of in-

tense rainfall were followed by increased earthquake activity within

a few days. Both regions predominantly consist of limestone and

dolomite with distinct signs of Karst formation. And both regions

have been seismically active indicating that they are tectonically

pre-stressed.

A common concept to explain hydroseismicity is that an increase

in pore fluid pressure reduces the shear strength of a porous medium

by counteracting normal stress (Saar & Manga 2003; Shapiro et al.
2005). In the framework of Coulomb failure, an increase in pore

fluid pressure moves the Mohr circle closer to the Mohr–Coulomb

failure envelope, while leaving the material’s shear strength un-

changed. If a porous medium is stressed to near critically values even

a small increase in pore pressure can provoke failure (Saar & Manga

2003; Hainzl et al. 2006). Changes in pore pressure as a triggering

mechanism for earthquakes have been postulated for many studies;

for example, aftershock series (Nur & Booker 1972; Miller et al.
2004), earthquake swarms (Parotidis et al. 2005), reservoir induced

and fluid-injection induced earthquakes (Talwani 1997; Zoback &

Harjes 1997), microseismicity related to seasonal changes in

groundwater flow or stream discharge (Roth et al. 1992; Saar &

Manga 2003) and earthquakes following periods of intense rainfall

(Jimenez & Garcia-Fernandez 2000; Hainzl et al. 2006; Kraft et al.
2006).

In this study, we also assume that an increase in pore fluid pressure

due to the infiltration of large amounts of rain is a viable mechanism

to explain the observed increase in seismicity. Pressure diffusion

of a large pressure impulse, caused by intense rainfall at the sur-

face, may lead to a local increase in pore fluid pressure at depth. A

common characteristic of hydroseismicity is that earthquakes often

occur after a certain time lag, that is related to the hydraulic dif-

fusivity (Talwani & Acree 1984). We observed a time delay of 76
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and 78 hr, for the Muotathal region and the Riemenstalden region,

respectively, between the first onset of the rainfall the occurrence

of the first earthquakes. If pore pressure diffusion is the dominating

process then the observed time lag should correspond to a reason-

able estimate of the hydraulic diffusivity. The following rough esti-

mate of the hydraulic diffusivity D is often used to compute D from

the distance L of a triggered earthquake to the fluid source and the

time lag �t (Talwani & Acree 1984):

D ≈ L2/�t. (1)

Because eq. (1) often overestimates D we chose a more realistic

approach to estimate D, first presented by Shapiro et al. (1997). In

this approach, pore pressure diffusion is modelled in an infinite

homogeneous isotropic poroelastic saturated medium; the initial

pore-pressure pertubation (rainfall) is given by a step increase in

fluid pressure at the surface of the medium. Since triggered seis-

micity is clustered in space and time, we use focal depth as dis-

tance and consider the initial pore-pressure pertubation as a point

source.

In a source free, homogeneous half space, with scalar hydraulic

diffusivity D, the low-frequency evolution of pore pressure P due to

irrotational flow can be described by the diffusion equation (Shapiro

et al. 1997; Wang 2000):

∂ P

∂t
= D∇2 P. (2)

For a periodic pore-pressure variation P(0,t) = Ps exp(iωt) at the

surface of the half space the solution to eq. (1) is given by (Wang

2000; Kraft et al. 2006):

P(z, t) = Ps exp

(
−z

√
ω

2D

)
exp

[
iω

(
t − 2√

2ωD

)]
. (3)

This is a plane wave with attenuation coefficient equal to
√

2ωD
and with a velocity of

√
2ωD, where z is depth, t is time, and ω is

angular frequency.

To estimate the hydraulic diffusivity D from eq. (3) we follow the

logic of Shapiro et al. (1997) and Kraft et al. (2006): The increase

in pore pressure at the surface can be modelled as a rectangular
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pressure pulse starting at the same time as the rainfall t = 0 and

ending at some time t = te. For an earthquake triggered at time t
= t0 the evolution of the pressure pulse for times t > t0 is irrele-

vant. Consequently, the duration of the pressure pulse can be set to

t0 for this event. The dominant frequencies of the power spectrum

of a rectangular pulse with duration t0 are in the range 0 ≤ ω ≤
2π /t0 = ω0. The propagation velocity of pore-pressure variations

is proportional to
√

ω (eq. 3). Assuming that even small increases

in pore fluid pressure can trigger seismicity, we set ω = ω0 = 2 −
π /t0 to calculate the velocity of a pressure front behind which seis-

micity can be triggered. For the time range t0 ∈ [0,t] we find the

time–depth dependence of the triggering pressure front as (Kraft

et al. 2006):

z =
√

4π Dt . (4)

By plotting focal depth of triggered earthquakes as a function of

time, hydraulic diffusivity D can be estimated by finding a parabola

from Eq. (4) that represents the upper envelope of all points in the

time–depth plot (Shapiro et al. 1997).

Fig. 8 plots focal depth over time for the earthquake series in

Muotathal and Riemenstalden. We do not separate between the two

regions because the number of events is relatively low, and because

the regions are not far apart. Furthermore, they show a similar ge-

ology (Karst areas), which suggests that hydraulic diffusivity may

not be very different. We chose two different starting times for the

plots: (1) 08/19/2005 at 16:00 and (2) 08/21/2005 at 10:00. Rain-

fall started on 08/19/2005 at 16:00 with a small maximum and a

break until 08/21/2005 at 10:00 when the actual rainfall event started

(Fig. 3). We find hydraulic diffusivities of D = 0.10 and 0.20 m s−2

for the earlier start time and the later start time, respectively (Fig. 8).

Most of the earthquakes occurred at shallow depths (<5 km) and

were of small magnitudes. Consequently, estimated errors in focal

depth were large as shown by large error bars in Fig. 8. Taking these

error bounds into account hydraulic diffusivities can range over one

order of magnitude from D = 0.01 to 0.15 m s−2 and from D =
0.05 to 0.50 m s−2 for the earlier start time and the later start time,

respectively (Fig. 8).

Estimated hydraulic diffusivities are known to vary over several

orders of magnitudes. Based on the evolution of reservoir induced

seismicity, Talwani & Acree (1984) estimated hydraulic diffusivi-

ties in the range from 0.5 to 50.0 m2 s−1. Hydraulic diffusivities

in crystalline rocks estimated from fluid-injection experiments at

depths between 2.0 and 9.0 km depth range from 0.05 to 1.0 m2 s−1

(Zoback & Harjes 1997; Shapiro et al. 2002). Finally, hydraulic dif-

fusivities inferred from seismicity induced by seasonal groundwater

recharge or by rainfall range from 0.1 to 1 m2 s−1 (Roth et al. 1992;

Saar & Manga 2003; Kraft et al. 2006). Our values fit well in this

range, strongly supporting the idea that observed seismicity was

triggered by the large amount of rainfall.

D I S C U S S I O N A N D C O N C L U S I O N S

We found good evidence that a series of earthquakes in central

Switzerland was triggered by heavy rainfall. Seismicity and rainfall

show a clear correlation in time and space. Earthquakes occurred

at the end of a 3-d period of exceptional heavy rainfall on 2005

August 23, and they clustered in regions that received some of the

highest rainfall (Fig. 1). In our preferred model, an increase in fluid

pressure at the surface due to a large amount of rain leads to a

local increase in pore fluid pressure at depth. An increase in pore

fluid pressure will reduce the shear strength of a porous medium by

counteracting normal stress and, at the end, provoke failure. A viable

mechanism that explains the migration of a pressure pulse to greater

depth is diffusion, which is governed by the hydraulic diffusivity of

the medium. We estimated hydraulic diffusivity D based on the tem-

poral evolution of focal depths for the region, that experienced the

highest triggered seismicity in central Switzerland (Muothatal and

Riemenstalden). Our best-fitting value of D = 0.10–0.20 m2 s−1 fits

well in the range of hydraulic diffusivities found for similar stud-

ies (Roth et al. 1992; Saar & Manga 2003; Kraft et al. 2006). This

further supports our model of pore-pressure diffusion and the as-

sociated increase in local pore pressure being the main triggering

mechanism.

Our estimate of D is based on a simplified hydrological model

and can only represent a first order approximation. Hence, the ob-

tained value of D can only be understood as an average over the

studied volume. D might not be constant in time because dynamic
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Figure 8. Focal depth versus time plot for earthquakes triggered in the Muotathal (circles) and Riemenstalden (stars) region. Time is in hours since (a)
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rupture can change porosity and permeability (Miller et al. 2004).

In a real geological setting, D has to be calculated in the form of an

anisotropic tensor (Rothert & Shapiro 2003) which is likely highly

heterogeneous. Furthermore, the Muothatal and Riemenstalden re-

gions are dominated by Karst geology with large open fractures.

These fractures may act as pathways, allowing fluids to migrate to

greater depth much faster and much more efficiently than modelled

by simple pore-pressure diffusion. On the other hand, it should be

noted that our estimated hydraulic diffusivities vary over one or-

der of magnitude if the appropriate error in focal depth is taken in

consideration (Fig. 8). Most of the earthquakes were of small mag-

nitudes (M < 2) and, consequently, only observed at a low number

of stations (<6). This in conjunction with very shallow focal depths

(<5 km) yield large uncertainties in focal depths (Fig. 6). There-

fore, a more detailed or more realistic hydrological interpretation is

beyond the limits of our data set. Studies of induced seismicity by

fluid injection in boreholes are much more suitable for these kind

of studies since monitoring networks are of much higher quality for

these experiments, as compared to nation-wide networks for routine

seismicity monitoring.

In our interpretation we assumed that induced pore-pressure vari-

ations can cause stress changes large enough to trigger earthquakes.

Our simplistic approach does not allow to model stress changes

caused by pore-pressure variations. For a very similar tectonic set-

ting at Mt Hochstaufen, SE Germany, Hainzl et al. (2006) com-

bined the solution of the diffusion equation describing the evolu-

tion of fluid mass alteration per unit volume with the framework of

rate-state friction (Dieterich 1994) to quantify the effects of pore

pressure changes on seismicity. Using high-quality seismic and me-

teorological data from dense networks they concluded that stress

changes in the order of 100 Pa are sufficient to trigger earthquakes.

These stress changes are several orders of magnitude smaller than

observed for the bulk of induced seismicity in fluid injection exper-

iments, which are in the order of 1 MPa (Zoback & Harjes 1997).

At the same time, it is generally accepted that many faults are near

critically stressed and that small stress changes may be sufficient to

provoke failure on pre-existing faults (Townend & Zoback 2000).

The regions of Riemenstalden and Muotathal are located within the

Helvetic nappes, which have been extensively folded and fractured

during crustal shortening (Fig. 5). Moreover, earthquakes triggered

by the rainfall occurred close to hypocentre locations of past earth-

quakes, with similar magnitudes and focal depths (Fig. 6). This

supports the idea that these earthquakes occurred on existing faults

that were critically stressed. In other words, the earthquakes were

‘clock-advanced’ they would have happened sooner or later. The

fact that only a few regions in central Switzerland showed an in-

crease in seismicity following the unusual rainfall event, although

the amount of rainfall was equally high (Fig. 1), also strengthens this

idea. Some of the regions that did not experience earthquake trig-

gering, such as the Molasse basin of the Alpine foreland, are known

to be seismically relatively quiet indicating that existing faults may

not be critically stressed (Baer et al. 2003).

Examples of earthquake triggering by intense rainfall or seasonal

groundwater recharge are still rare. For Switzerland, a weak corre-

lation was previously found between long periods of intense precip-

itation and an increase in seismicity (Roth et al. 1992). However,

these observations are not comparable in magnitude to ours. Clearly,

the amount of rainfall in the time period of August 19–22, 2005,

was exceptionally. The statistical recurrence rate for such an event

is more than 300 yr (Meteoswiss 2005, personal communication).

Whether previous rainfall events were not strong enough to trig-

ger earthquakes is an important question. It is likely that a certain

threshold may exist above which earthquakes can be triggered by

rainfall. This threshold will depend not only on the amount of rain-

fall but also on crustal stress conditions. Hence, a systematic study

of rainfall related earthquake triggering would provide important in-

sights into the state of stress of the upper crust. We are not aware of a

similar increase in seismicity following other periods of intense rain-

fall. However, smaller increases in seismicity could have occurred

undetected because magnitudes of triggered earthquakes are small

and at the lower end of the detection threshold of the Swiss Digital

Seismic Network. A systematic study of rainfall related earthquake

triggering would need a denser array of seismic stations and more

sophisticated statistical analysis, which is beyond the scope of this

study.
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