7,978 research outputs found

    On the rapidity dependence of the average transverse momentum in hadronic collisions

    Full text link
    The energy and rapidity dependence of the average transverse momentum pT\langle p_T \rangle in pppp and pApA collisions at RHIC and LHC energies are estimated using the Colour Glass Condensate (CGC) formalism. We update previous predictions for the pTp_T - spectra using the hybrid formalism of the CGC approach and two phenomenological models for the dipole - target scattering amplitude. We demonstrate that these models are able to describe the RHIC and LHC data for the hadron production in pppp, dAudAu and pPbpPb collisions at pT20p_T \le 20 GeV. Moreover, we present our predictions for pT\langle p_T \rangle and demonstrate that the ratio pT(y)/pT(y=0)\langle p_{T}(y)\rangle / \langle p_{T}(y = 0)\rangle decreases with the rapidity and has a behaviour similar to that predicted by hydrodynamical calculations.Comment: 11 pages, 7 figures; revised version: new results for the average transverse momentum at partonic level added in fig. 4; Results and Discussion section has been improved and enlarge

    Testing the running coupling kTk_{T}-factorization formula for the inclusive gluon production

    Full text link
    The inclusive gluon production at midrapidities is described in the Color Glass Condensate formalism using the kTk_T - factorization formula, which was derived at fixed coupling constant considering the scattering of a dilute system of partons with a dense one. Recent analysis demonstrated that this approach provides a satisfactory description of the experimental data for the inclusive hadron production in pp/pA/AApp/pA/AA collisions. However, these studies are based on the fixed coupling kTk_T - factorization formula, which does not take into account the running coupling corrections, which are important to set the scales present in the cross section. In this paper we consider the running coupling corrected kTk_T - factorization formula conjectured some years ago and investigate the impact of the running coupling corrections on the observables. In particular, the pseudorapidity distributions and charged hadrons multiplicity are calculated considering pppp, dAu/pPbdAu/pPb and AuAu/PbPbAuAu/PbPb collisions at RHIC and LHC energies. We compare the corrected running coupling predictions with those obtained using the original kTk_T - factorization assuming a fixed coupling or a prescription for the inclusion of the running of the coupling. Considering the Kharzeev - Levin - Nardi unintegrated gluon distribution and a simplified model for the nuclear geometry, we demonstrate that the distinct predictions are similar for the pseudorapidity distributions in pp/pA/AApp/pA/AA collisions and for the charged hadrons multiplicity in pp/pApp/pA collisions. On the other hand, the running coupling corrected kTk_T - factorization formula predicts a smoother energy dependence for dN/dηdN/d\eta in AAAA collisions.Comment: 9 pages and 4 figure

    Electromagnetic transition form factors of negative parity nucleon resonances

    Get PDF
    We have calculated the transition form factors for the electromagnetic excitation of the negative parity resonances of the nucleon using different models previously proposed and we discuss their results and limits by comparison with experimental data.Comment: 13 pages, 6 figures, to be published on Journal of Physics

    Driving attitudes, behaviours, risk perception and risk concern among young student car-drivers, motorcyclists and pedestrians in various EU countries

    Get PDF
    The number of car crashes has gradually reduced in the last decade across all European Countries, but the number of motorcycle crashes has remained nearly the same. In our research we investigate whether there are differences in attitudes towards road safety issues, driving behaviours in specific imagined situations, risk perception and risk concern, among young student drivers and riders. The study involved a large sample taken from across six European countries. The results reveal that although there are no differences between motorcyclists and car drivers in their attitudes toward road safety rules, differences do appear when the road rules compliance is assessed in specific imagined situations, with motorcyclists reporting to be more prone than car-drivers to violations of traffic rules. Moreover, despite the perceived risk during driving is the same for motorcyclists and car-drivers, differences do appear on their concern about this risk, with motorcyclists reporting to be less concerned than car-drivers about the risk of a road crash. This could lead to a high probability of risky driving behaviour in motorcyclists than in car-drivers. Present findings have important practical implications for road safety training courses

    Mapping water in protostellar outflows with Herschel: PACS and HIFI observations of L1448-C

    Get PDF
    We investigate on the spatial and velocity distribution of H2O along the L1448 outflow, its relationship with other tracers, and its abundance variations, using maps of the o-H2O 1_{10}-1_{01} and 2_{12}-1_{01} transitions taken with the Herschel-HIFI and PACS instruments, respectively. Water emission appears clumpy, with individual peaks corresponding to shock spots along the outflow. The bulk of the 557 GHz line is confined to radial velocities in the range \pm 10-50 km/s but extended emission associated with the L1448-C extreme high velocity (EHV) jet is also detected. The H2O 1_{10}-1_{01}/CO(3-2) ratio shows strong variations as a function of velocity that likely reflect different and changing physical conditions in the gas responsible for the emissions from the two species. In the EHV jet, a low H2O/SiO abundance ratio is inferred, that could indicate molecular formation from dust free gas directly ejected from the proto-stellar wind. We derive averaged Tkin and n(H2) values of about 300-500 K and 5 10^6 cm-3 respectively, while a water abundance with respect to H2 of the order of 0.5-1 10^{-6} along the outflow is estimated. The fairly constant conditions found all along the outflow implies that evolutionary effects on the timescales of outflow propagation do not play a major role in the H2O chemistry. The results of our analysis show that the bulk of the observed H2O lines comes from post-shocked regions where the gas, after being heated to high temperatures, has been already cooled down to a few hundred K. The relatively low derived abundances, however, call for some mechanism to diminish the H2O gas in the post-shock region. Among the possible scenarios, we favor H2O photodissociation, which requires the superposition of a low velocity non-dissociative shock with a fast dissociative shock able to produce a FUV field of sufficient strength.Comment: 16 pages, 13 figures, accepted for publication on Astronomy & Astrophysic
    corecore