Electronic Notes in Theoretical Computer Science 62 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume62.html| 14 pages

A type preserving translation of Fickle into
Java

(Extended Abstract)

D. Ancona™** C. Anderson” F. Damiani>>®
S. Drossopoulou®*? P. Giannini** E. Zucca -1

Abstract

We present a translation from Fickle (a Java-like language allowing objects that can
change their class at run-time) into plain Java. The translation, which maps any
Fickle class into a Java class, is driven by an invariant that relates a Fickle object
to its Java counterpart. The translation, which is proven to preserve both the static
and the dynamic semantics of the language, is an enhanced version of a previous
proposal by the same authors.

1 Introduction

Dynamic object re-classification is a feature which allows an object to change
its class while retaining its identity. Thus, the object’s behavior can change
in fundamental ways (e.g., non-empty lists becoming empty, iconified win-
dows being expanded, etc.) through re-classification, rather than replacing
objects of the old class by objects of the new class. Lack of re-classification
primitives has long been recognized as a practical limitation of object-oriented
programming.

Fickle [3] is a Java-like language supporting dynamic object re-classification,
aimed at illustrating features for object re-classification which could extend

1 Partially supported by MURST Cofin’99 Project “Teoria della Concorrenza, Linguaggi
di Ordine Superiore e Strutture di Tipi (TOSCA)”

2 Partially supported by EPSRC (Grant Ref:GR/L 76709)

Address: DISI, Universita di Genova, Genova, Italy.

Address: Imperial College, London, UK.

Address: Dipartimento di Informatica, Universita di Torino, Torino, Italy.
Address: DISTA, Universita del Piemonte Orientale, Alessandria, Italy.
Email: davide@disi.unige.it

Email: [damiani@di.unito.it

Email: [scd@doc.ic.ac.uk

10 Email: [giannini@di.unito.it

1 Email: zucca@disi.unige.it

© 00 N O U W

(©2001 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume62.html�
mailto:davide@disi.unige.it�
mailto:damiani@di.unito.it�
mailto:scd@doc.ic.ac.uk�
mailto:giannini@di.unito.it�
mailto:zucca@disi.unige.it�

ANcoNA et al

an imperative, typed, class-based, object-oriented language. A distinguished
feature of Fickle, with respect to other proposals for dynamic object re-
classification (see, e.g., [2/4]5]), is that it is type-safe, in the sense that any type
correct program is guaranteed never to access non-existing fields or methods.
Fickle is essentially a small subset of Java (with only non-abstract classes,
instance fields and methods, integer and boolean types and a minimal set
of statements and expressions) enriched with features for dynamic object re-
classification. In particular, a Fickle class which does not use these features
is a Java class.

In this paper we consider the problem of implementing, starting from the
Fickle design, a working extension with dynamic object re-classification of a
real object-oriented language. In particular, we show that a Java environment
could be easily and naturally extended in such a way to handle standard Java
and Fickle classes together.

In order to show this, we define a translation from Fickle into plain Java.
The translation is proved to preserve static and dynamic semantics (that is,
well-formed Fickle programs are translated into well-formed Java programs
which behave “in the same way”). Moreover, the translation is effective, in the
sense that it gives the basis for an effective extension of a Java compiler. This
is ensured by the fact that the translation of a Fickle class does not depend on
the implementation of used classes, hence can be done in a separate way, that
is, without having their sources, exactly as it happens for Java compilation.
This is so because type information needed by the translation can be retrieved
from type information stored in binary files.

In comparison with the previous version by the same authors [1], the trans-
lation presented here is simpler and furthermore preserves types.

The paper is organized as follows: In Section 2 we introduce Fickle. In
Section 13 we describe the translation. In Section 4/ we state the properties
of the translation (preservation of static and dynamic semantics)*® and il-
lustrate the compatibility of the translation with Java separate compilation.
In the Conclusion we summarize the relevance of this work and illustrate the
advantages with respect to the translation described in [1].

2 The language Fickle

This section is not intended to be an exhaustive presentation of the language.
We refer to [3] for a complete definition. The syntax of the language is specified
in Fig. 1. We refer to [3] for the definition of the static semantics of Fickle (the
type system of Fickle can be easily adapted to the subset of Java serving as
target for the translation) and of some auxiliary functions used in the sequel.

In Fickle class definitions may be preceded by the keyword state or root

12 Proofs will be provided in a forthcoming extended paper.

2

ANcoNA et al

p = class™
class ::= [root | state] class ¢ extends c'{field" meth™}
field ==t f

meth ::=t m(t' x)[¢]{sl return e; }

t::=boolean | int | ¢

6= {c)

sl = s*

su={sl} | if (e) s1 else so | se;| this!le;
se = var = e | e;.m(ez) | new ¢()

e = se | sval | var | this

var :=x|e.f

sval := true | false |null | n

Fig. 1. Syntax of Fickle

with the following meaning:

e state classes are meant to describe the properties of an object while it sat-
isfies some conditions; when it does not satisfy these conditions any more,
it must be explicitly re-classified to another state class.

We require state classes to extend either root or state classes.

* root classes abstract over state classes. Objects of a state class C1 may be
re-classified to a class C2 only if C2 is a subclass of the uniquely defined root
superclass of C1.

We require root classes to extend only plain, i.e., neither root nor state,
classes

For a class ¢ of a program p, R(p, c¢) denotes the root superclass of c if ¢ is a
state class, and ¢ otherwise.

Objects of a plain class C behave like regular Java objects, that is, are
never re-classified. However, since state classes are subclasses of plain classes,
objects bound to a variable x of type C may be re-classified. Namely, if C had
two state subclasses C1 and C2 and x referred to an object o of class C1, then
o may be re-classified to C2.

Objects of either state or root class C are created in the usual way by the
expression new C().

Re-classification statement, this!!C, sets the class of this to C, where
C must be a state class with the same root class of the static type of this.
The re-classification operation preserves the types and the values of the fields
defined in the root class, removes the other fields, and adds the fields of C that
are not defined in the root class, initializing them in the usual way.

ANcoNA et al

Example 2.1 The following Fickle program defines the classes® P, R, S1,
and S2.

class P extends Object{

int f1;

int m1(){R}{this.f1=1; return this.m2();}
int m2(){R}{return this.f1;}

}

root class R extends P{ }

state class S1 extends R{
int m2(){R}{this!!S2; this.f2=this.f1l; return this.f2;}
static void main(String[] args){System.out.println(new S1().m1());} }

state class S2 extends R{

int £2;

int m1(){return 3;}

int m2(){R}{this.f2=1;return this.fl+this.f2;}
}

Consider the program in Example 2.1l Re-classifications are caused either
directly by re-classification statements, like this!!S2 in body of method m2
of class S1, or indirectly by method calls, like new S1().m1() in the body of
main which, in turn, causes the invocation of method m2 of class S1. At the
start of method m2 of class S1 the receiver is an object of class S1, therefore
it has only the field £1, while it does not have the field £2. After execution
of this!!S2 the receiver is of class 82, the field f1 retains its value while the
field £2 is now available.

Variables (that is, fields and parameters, since, for simplicity, Fickle does
not have local variables) and return values of methods must be declared with
types which are not state classes; we call these types non-state types. Thus,
fields and parameters may denote objects which do change class, but these
changes do not affect their type. The only expressions whose type can be a
state class are creation expression (new C()) and this; moreover, the type of
this may change.

Annotations like {R} before method bodies are called effects. Similarly to
what happens for exceptions in throws clauses, effects list the root classes of
all objects that may be re-classified by execution of that method. Methods
annotated with no effects, like m1 in class S2, do not cause any re-classification.
Methods annotated by non-empty effects, like m2 in class S1, may re-classify
objects of (a subclass of) a class in their effect (in the example, of R).

A method annotated with effects can be overridden only by methods an-

13 The class S1 contains the method main. For simplicity, we have omitted the method
main from both the Fickle syntax (in Fig. 1) and the formal definition of the translation (in
Sections [3.2H3.5).

ANcoNA et al

notated with the same or less effects®.

By relying on effects annotations, the type and effect system of Fickle
ensures that re-classifications will not cause accesses to fields or methods that
are not defined for the object. Typing an expression (or statement) d in
the context of class declarations in program p and of type assumptions for
parameters in environment vy

pyFd:it|c|o¢

involves three components: t is the type of the value returned by the evaluation
of d (if d is an expression) or void (if d is a statement), ¢ is the type of this
after the evaluation of d, and ¢ conservatively estimates the re-classification
effect of the evaluation of d on objects. (See [3] for the typing rules.)

Note that effects are explicitly declared by the programmer rather then
inferred by the compiler. Even though effects inference could be implemented
in practice, more flexibility in method overriding can be achieved by allowing
the programmer to annotate methods with more effects than those that would
be inferred (similarly to what happens for exceptions).

3 The translation of Fickle into Java

In this section we give a description of the translation. We first give an
informal overview of the encoding of objects (Section [3.1), and then present
the formal definition (Sections 3.2H3.5).

3.1 Encoding of objects

The translation is based on the idea that each object o of a state class ¢ can be
encoded in Java by a pair <id,imp> of objects; we call ¢d the identity object
of tmp and imp the implementor object of id. Roughly speaking, ¢d provides
the identity of o, and imp the behavior of o, so that any re-classification of o
changes ¢mp but not «d and method invocations are resolved by tmp. Hence,
two implementors paired with the same identity represent the same object at
different execution stages.

An object o which is not an instance of a state class does not need to
be encoded in principle; however, for uniformity, the same kind of encoding
described above is adopted also in this case, so that during the execution of
a translated program there will be exactly an identity object for any Fickle
object. Note that, while there could be more than one implementor for Fickle
objects of state class, say <id,imp> and <id,imp'>, the converse cannot
be true: if <id,imp> and <id',imp> are translation of Fickle objects then
id = id'. Re-classification of objects can be exemplified by the diagram in
Fig. 2. Classes are translated according to the following two rules:

14 This means that adding a new effect in a method of a class ¢ does not require any change
to the subclasses of ¢, but may require some changes to its superclasses.

5

ANcoNA et al

identity o

\

\

|
1
1
|
|
|
I
[
I

. 7imp 1imp

4 .pe .
.7 reclassification re-classification

implementor i1 implementor i2 implementor i3

Fig. 2. Re-classification of objects

o each Fickle class (including Object) is translated into exactly one Java class
(whose instances are implementors);

 the translation preserves the inheritance hierarchy.

We illustrate the above in terms of the classes in Example 2.1. Let s have
static type R. After the instruction

s=new S1();

the Fickle object referred by s is encoded in the translation, as sketched in
Fig. 3, by the two Java objects 0ol and 02 in which the field imp of 02 points to
ol (the dotted line). The variable s refers a Java object ol of class S1 with two

to ldentity
02 T
s - | -
impl
ol 03
t0S] -—— i >~ —T— >t
id id
f1 0 f1
f2

Fig. 3. Encoding of the Fickle object referred by s

fields: £1 inherited from P, and id of type Identity and inherited from class
FickleObject (see Fig. 4). The field id and imp are used in the translation
for recovering the identity and the implementor of an object, respectively. In
this case the field id points to an object 02 of class Identity that contains
only a field imp that refers to the current implementor of the object (in this
particular case the object ol referred by s itself). After the re-classification
this!!S2 the Java object 03 of class S2 is created and the field imp of the

6

ANcoNA et al

class Identity extends Object{

FickleObject imp;

Identity(FickleObject thelImp){this.imp=theImp;}
X

class FickleObject extends Object{

Identity id;

FickleObject O{ // creates instances
id=new Identity(this);

}

FickleObject(FickleObject oldImp){ // re-classifies objects
id=o0ldImp.id;
id.imp=this;

}

}

Fig. 4. The classes Identity and FickleObject

identity 02 points to the new object 03. Note that the new implementor for the
Fickle object referred by s can be recovered from the previous implementor ol
by accessing its id field denoting the identity object 02 and, then, by selecting
field imp of 02.

3.2 Translation of programs

The translation of a Fickle program p consists of the translation of all classes
declared in p. Since the translation of statements and expressions depends on
their types, the program p is passed as parameter to the translation function
for classes.

A
=1

2] - class1] oiass (P) - - - [€la38] crass (D) where p = classy ... class,

3.8 Translation of classes

As previously said, each translated class extends class FickleObject. The
definition of such a class along with the definition of the class Identity is
given in Fig. /4.

The constructor FickleObject () is invoked whenever a new instance of a
Fickle class is created and initializes the field id to a new identity.

On the other hand, constructor FickleObject (FickleObject oldImp) is
invoked whenever an object is re-classified. An object o which needs to be
re-classified to a state class ¢ (recall that in the translation every class except
for Identity is subclass of FickleObject), and which is encoded by the
pair <id, imp>, is transformed into <id,imp'>, where imp’ denotes the new
implementor of class ¢ (provided by a proper constructor of ¢; see definition
below). The argument of the constructor denotes the old implementor imp,
from which the identity id can be recovered, whereas imp’ is denoted by this.

7

ANcoNA et al

Fields are initialized so that the identity and the new implementor point to
each other.

Each Fickle class c is translated into a single Java class containing the
translation of all field and method declarations of ¢ and a pair of constructors,
used for creating instances and for re-classifying objects, respectively.

The translation of fields and methods is independent of the kind of class.
However, the constructor for re-classifying an object in state classes is differ-
ent from those defined in the other kinds of classes.

[[root] class c extends ¢'{t1 f1;...tm fm; methy ... methpy}] e (P) =
class c extends name(c){ [t1 f1;]pea(C) - [tm fm;]pea(C)
[methy] e (s €) - - . [Methp] mem (D €)

cO{}

¢(c 01dImp){

super(oldImp);
f1 = oldImp.f1;... frn = 0ldImp.fp,; }
}
where name(c’) = FickleObject if ¢ = Object, and name(c’) = ¢’ otherwise.

[state class c¢ extends c{field, ... field,, methy ... methy}]us (D) 2

class c extends c'{ [field,] (c) - . . [field,,] s (c)
[methy] e (D, €) - - . [methp] e (s €)
cO{}

¢(R(p,c) 01dImp){super(oldImp); }

}

More precisely, the constructor ¢(c oldImp) for re-classification defined in
both plain and root classes, after invoking the corresponding constructor
in the superclass, copies all the fields of the old implementor (denoted by
01dImp) declared in ¢ in the corresponding fields of the new implementor (de-
noted by this). This step is not performed in the corresponding constructor
¢(R(p,c) oldImp) in state classes since, according to the Fickle semantics,
only the fields of the root superclass are preserved by re-classification.

3.4 Translation of fields

Translation of each field f comes equipped with a static method tof used
for translating the assignments of a value v to a field f of an object o (see
Section 13.7.3 below), since the implementor of the object o can be correctly
selected only after evaluating v.

ANcoNA et al

1>

[t filaalc)
tf;

static ¢t tof(FickleObject anImp,t x){return ((c) anImp.id.imp).f = x;}

3.5 Translation of methods

Translating methods consists of translating their bodies. Effects are omitted,
whereas the signatures remain the same. Since the translation of statements
and expressions depends on their types, the program p and the environment ~
defining the type of the parameters and of this must be passed as argument
to the corresponding translation functions.

[t m(t' x)¢{sl return ¢; }],..(p,c) £
t m(t' %) {[80] e (p,) return [e]..,.(p,7); }
static t callm(FickleObject anImp,t’ x){return ((c¢) anImp.id.imp).m(x); }
where v =’ x,¢ this, +' =+t x,¢ this, and p,yF sl:void| | -
Note that the environment +" used for translating the returned expression e
may be different from ~, since execution of sl could re-classify this. Fur-
thermore, translation of each method m comes equipped with a static method
callm used for translating invocations of m on receiver o and with argument

x (see Section 3.7.3/ below); indeed, the implementor of o can be correctly
selected only after evaluating the argument x.

3.6 Translation of statements

Except for object re-classification, all statements are translated by translat-
ing their constituent statements or subexpressions. The notation v[c this]
denotes the environment obtained by updating v so that it maps this to c.

A
[[8 Sl]]at‘rnts (p? ’7) = [[S]]stmt (p? ’7) [[Sl]]stmts (p) ’y/)
where p,v F s:void | ¢ | - and 7' = 7[c this]

A
[{s!}me (s 7) = {Tsl]tmes (P, 1)}
[if (e) s1 else $a]um(psY) 2
lf ([[e]]empr<p7 ’Y)) [[Slﬂstml(p7 ’Y/) else [[82]]sl,mL(p7 ,y/)
where p,vF e:boolean|c|_, + =~[cthis]

[5€:Ln (P, 1) 2 5]y (p,7);

[this!e;]m (s) 2 new c(this);
The translation of re-classification to class ¢ consists of the call to the appro-
priate constructor of class ¢; this is passed as parameter to the constructor
in order to correctly initialize the fields of the new implementor.

9

ANcoNA et al

3.7 Translation of expressions

Types of expressions are preserved under the translation. This is formalized
in Sect. 4.

3.7.1 Values, assignment to variables and object creation
The translation is straightforward.

[sval]..,.(p,) 2 sval
[[X = 6]] ezm'(pa 7) é X = [[6]]811”.(])7 ’y)
[new ¢ (p,) = new c()

3.7.2 Parameter, this, and field selection

In our encoding, in order to access the current implementor of an object we
have to select the implementor currently pointed to by the identity of the
object. For instance, the parameter x cannot be simply translated in itself,
since x may refer to an obsolete implementor. Note that this problem does
not occur for parameters and fields of type int and boolean.

A | ((t) x.id.imp), if ¢ is a class
[[X]]el‘pr(p7 ry) = .
X, otherwise
. A C 1.
[this].., (1) 2 ((¢) id.imp)
A] (@) [€]ep (P, y)-f-id.imp), if ¢ is a class
[[e'f]]ezp7'(p7’7) = .
([[e]] expr (p7 ’y)f7 otherwise
where p,ybFx:t|_| ., pyFthis:c|_|. andp,yFef:t]_]-

Downcasting is needed after selection because field imp has type FickleObject.

3.7.8 Field assignment and method call

Field f (or method m) of the object denoted by the translation of e; is ac-
cessed through the implementor of its identity. However, ey could re-classify
the object, therefore the selection id.imp is correct only after evaluating the
translation of e,. This is achieved by invoking the auxiliary static methods
associated with fields and methods.

[[el-m(e2)]]ezpr(p7 fY) é C'Callm(Hel]]empr(pa 7)7 [[62]]empr(pa ’}/))
where p,yFei:cd | | ,v =~[c" this],p,7 Fex: " | -| ¢ and c = ¢pQ,¢
The class ¢ on which the static methods must be invoked is determined by

applying the effect ¢ = {c1,...,¢,} to the static type ¢ of the expression e;:
10

ANcoNA et al

(e e}l — ¢i I R(p,d)=c;forsomei€l,...;n
1y---5Cn pt —

¢ otherwise

Indeed, if the execution of ey re-classifies the object denoted by e;, then the
field f and the method m must be searched in R(p, ') rather than ¢

Instead of using static methods, another possibility would be to introduce
local variables in which to store intermediate results, but in this case we would
obtain a statement from the translation of an expression.

Example 3.1 The program in Example 2.1 is translated as follows.

class P extends FickleObject{

int f1;

static int tofl (FickleObject anImp, int x) {return ((P)anImp.id.imp).fl=x;}
int m1O){P.tof1(((P)id.imp),1);return P.callm2(((P)id.imp));}

static int callml(FickleObject anImp){return ((P)anImp.id.imp).m1(Q);}

int m2(){return ((P)id.imp).f1;}

static int callm2(FickleObject anImp){return ((P)anImp.id.imp).m2();}

PO{}

P(P oldImp){super(oldImp); fl=o0ldImp.f1;}

}

class R extends P{

RO}

R(R 0ldImp){super(oldImp);}
}

class S1 extends R{

int m2(){new S2(this); S2.tof2(((S2)id.imp), ((S2)id.imp).f1); return ((S2)id.imp).£f2;}
static int callm2(FickleObject anImp){return ((S1)anImp.id.imp).m2();}

static void main(String[] args){System.out.println(R.callml(new S1()));}

S10{}

S1(R oldImp){super(oldImp);}

}

class S2 extends R{

int £2;

static int tof2 (FickleObject anImp, int x) {return ((S2)anImp.id.imp).f2=x;}
int m1(){return 3;%}

static int callml(FickleObject anImp){return ((S2)anImp.id.imp).m1();}

int m2(){S2.tof2(((82)id.imp),1); return ((S2)id.imp).f1+((82)id.imp).£2;}
static int callm2(FickleObject anImp){return ((S2)anImp.id.imp).m2();}

s20{}

S2(R oldImp){super(oldImp);}

11

ANcoNA et al

4 Properties of the translation

In this section we formalize the previously mentioned properties of the trans-
lation.

4.1 Preservation of static correctness

Theorem 4.1 For any Fickle program p, if p is well-typed (in Fickle), then
[Pl ores s well-typed (in Java).

In order to be proved, the claim of the theorem must be extended to all
subterms of p and, hence, to all typing judgments. The strengthened claim
can be proved by induction on the typing rules.

The translation preserves types in the following sense: if a Fickle expression
e has type t w.r.t. a program p and an environment 7, then e is translated
into an expression ¢’ that has type t w.r.t. [p] and ~.

4.2 Preservation of dynamic semantics

The semantics of the language Fickle we consider is the one introduced in [3].
Such semantics rewrites pairs of expressions and stores into pairs of values
(or the exception nullPntrExc, indicating a reference to a null object), and
stores. Values, denoted by v, are either booleans, or integers, or addresses,
denoted by ¢. Stores map parameters and the receiver this to values and map
addresses to objects. Objects are mappings between fields and values tagged
by the class they belong to: [[fy : vq,...,f; v,]]1°.

The judgment e, ~» v,0’ means that the evaluation of e in the store o
w.r.t. p produces the value v and modifies the store to o’.

To state the semantic correctness result we introduce a relation between
values p, 0,0’ F v & Vv that says that v/ in ¢’ is the translation of v in o w.r.t.
p. For primitive values such relation is the identity and for addresses it means
that the objects referred by the addresses are one the translation of the other.
This relation induces a relation between stores p - o ~ ¢’ that expresses the
fact that store o’ is the “translation” of store o, that is, any object o of class
¢ in o is related to an object o’ in o’.

Theorem 4.2 For a well-typed program p, a well-typed expression e, stores
oo and oy such that p - o9 ~ 01,

e,00 > V,0 implies le], o1 i v, o}
where p = oy &~ o) and p,oy, 0] Fv V.

The proof is by induction on the derivation of e, oy ~» v, 0y.

4.3 Support for separate compilation

For any Fickle program p, let classes(p) denote the set of all classes defined in
p, and, for each class ¢ in classes(p), dep,(c) the set of all dependencies of c,

12

ANcoNA et al

that is, all superclasses of ¢ and all classes (either directly or indirectly) used
by ¢ (we omit the trivial formal definitions). Furthermore, let strip. be the
function on Fickle programs defined as follows:

strip,(cldy ... cldy) = strip(cldy) . .. strip(cldy,)
where classes(cldy ... cld,,) = dep,(c) and m <n
strip([root | state] class ¢ extends ¢'{field” meth*}) =
[root | state| class ¢ extends ¢'{field” strip(meth™)}
strip(methy ... meth,) = strip(methy) ... strip(meth,,)
strip(t m(t' x)¢{sl return e; }) =t m(t' x)¢p{return v(¢);}
false if ¢t = boolean
where v(t) =< 0 if t = int
null otherwise

The following theorem states that translation of a Fickle class ¢ depends only
on the body of ¢ and the type information (namely, class kind, parent class,
method headers and field declarations) of all its dependencies. This informa-
tion is stored in a regular Java class file,*? therefore the translation of ¢ can
be successfully carried out also when only the binary files of the other (Fickle)
classes are available.'® Note that this means that the Fickle language sup-
ports separate compilation, but does not imply anything on the compatibility
between Fickle and Java code.

Theorem 4.3 For any Fickle program p and declaration cldy of Fickle class
¢, if [cld1]).a(p) = clda, then [cldq]..(strip.(p)) = clds.

5 Conclusion

We have defined a translation from Fickle (a Java-like language supporting
dynamic object re-classification) into plain Java, and proved that this transla-
tion well-behaves in the sense that it preserves static and dynamic semantics.
This is a nice theoretical result, strengthened by the fact that, in order to
ensure these properties, we were able to identify some invariants which turned
out to be a very useful guide to the translation.

The translation improves on a previous one by the same authors introduced
in [1]. In the translation in [I] the encoding of objects was a pair <w,i> of
objects, where w was the wrapper object of i and i the implementor object of w.
To preserve the hierarchy of the original program the wrapper, to which the
program variables would refer to, was of root class, producing the following

15 Except for the kinds root and state, but class files format can be easily extended for
storing this new piece of information.
16 This property does not depend on Java support for reflection.

13

ANcoNA et al

problems.

(i) Types were preserved up to state classes. That is, if a Fickle expression
e has type t and ¢ is not a state class, then its translation has the same
type, otherwise it has type ¢’ where t’ is the root superclass of t.

(ii) There was duplication of the fields of the root and plain superclasses of
a state class.

The current translation solves both problems, making the translation of classes
more uniform (as we can see from the creation of objects). However, whereas
in the previous translation an object o not of state class was encoded by
<o0,0>, so no extra objects was created, in this new translation such object is
encoded by <ud, 0>, where id is an identity object.

An alternative direction for the implementation of Fickle (or, more gen-
erally, of an object-oriented language supporting dynamic re-classification of
objects) could be in a direct way, through manipulation of the object layout
or the object look-up tables.

References

[1] Ancona, D., C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini and
E. Zucca, An effective translation of Fickle into Java (extended abstract), in:
ICTCS’01, LNCS 2202 (2001), pp. 210-230.

[2] Chambers, C., Predicate Classes, in: ECOOP’93, LNCS 707 (1993), pp. 268-296.

[3] Drossopoulou, S., F. Damiani, M. Dezani-Ciancaglini and P. Giannini, Fickle:
Dynamic object re-classification, in: ECOOP’01, LNCS 2072 (2001), pp. 130
149.

[4] Ernst, M. D., C. Kaplan and C. Chambers, Predicate Dispatching: A Unified
Theory of Dispatch, in: ECOOP’98, LNCS 1445 (1998), pp. 186-211.

[5] Serrano, M., Wide Classes, in: ECOOP’99, LNCS 1628 (1999), pp. 391-415.

14

