33 research outputs found

    Automated detection and tracking of marine mammals : a novel sonar tool for monitoring effects of marine industry

    Get PDF
    Funding: The work was funded under the Scottish Government Demonstration Strategy (Project no. USA/010/14)and as part of the Department of Energy and Climate Change’s Offshore Energy Strategic Environmental Assessment programme, with additional resources from the Natural Environment Research Council (grant numbers: NE/R014639/1 and SMRU1001).1. Many marine industries may pose acute risks to marine wildlife. For example, tidal turbines have the potential to injure or kill marine mammals through collisions with turbine blades. However, the quantification of collision risk is currently limited by a lack of suitable technologies to collect long‐term data on marine mammal behaviour around tidal turbines. 2. Sonar provides a potential means of tracking marine mammals around tidal turbines. However, its effectiveness for long‐term data collection is hindered by the large data volumes and the need for manual validation of detections. Therefore, the aim here was to develop and test automated classification algorithms for marine mammals in sonar data. 3. Data on the movements of harbour seals were collected in a tidally energetic environment using a high‐frequency multibeam sonar on a custom designed seabed‐mounted platform. The study area was monitored by observers to provide visual validation of seals and other targets detected by the sonar. 4. Sixty‐five confirmed seals and 96 other targets were detected by the sonar. Movement and shape parameters associated with each target were extracted and used to develop a series of classification algorithms. Kernel support vector machines were used to classify targets (seal vs. nonseal) and cross‐validation analyses were carried out to quantify classifier efficiency. 5. The best‐fit kernel support vector machine correctly classified all the confirmed seals but misclassified a small percentage of non‐seal targets (~8%) as seals. Shape and non‐spectral movement parameters were considered to be the most important in achieving successful classification. 6. Results indicate that sonar is an effective method for detecting and tracking seals in tidal environments, and the automated classification approach developed here provides a key tool that could be applied to collecting long‐term behavioural data around anthropogenic activities such as tidal turbines.PostprintPeer reviewe

    Cost-effectiveness of an integrated 'fast track' rehabilitation service for multi-trauma patients involving dedicated early rehabilitation intervention programs: design of a prospective, multi-centre, non-randomised clinical trial

    Get PDF
    Contains fulltext : 79649.pdf (publisher's version ) (Open Access)ABSTRACT: BACKGROUND: In conventional multi-trauma care service (CTCS), patients are admitted to hospital via the accident & emergency room. After surgery they are transferred to the IC-unit followed by the general surgery ward. Ensuing treatment takes place in a hospital's outpatient clinic, a rehabilitation centre, a nursing home or the community. Typically, each of the CTCS partners may have its own more or less autonomous treatment perspective. Clinical evidence, however, suggests that an integrated multi-trauma rehabilitation approach ('Supported Fast-track multi-Trauma Rehabilitation Service': SFTRS), featuring: 1) earlier transfer to a specialised trauma rehabilitation unit; 2) earlier start of 'non-weight-bearing' training and multidisciplinary treatment; 3) well-documented treatment protocols; 4) early individual goal-setting; 5) co-ordination of treatment between trauma surgeon and physiatrist, and 6) shorter lengths-of-stay, may be more (cost-)effective.This paper describes the design of a prospective cohort study evaluating the (cost-) effectiveness of SFTRS relative to CTCS. METHODS/DESIGN: The study population includes multi-trauma patients, admitted to one of the participating hospitals, with an Injury Severity Scale score > = 16, complex multiple injuries in several extremities or complex pelvic and/or acetabulum fractures. In a prospective cohort study CTCS and SFTRS will be contrasted. The inclusion period is 19 months. The duration of follow-up is 12 months, with measurements taken at baseline, and at 3,6,9 and 12 months post-injury.Primary outcome measures are 'quality of life' (SF-36) and 'functional health status' (Functional Independence Measure). Secondary outcome measures are the Hospital Anxiety & Depression Scale, the Mini-Mental State Examination as an indicator of cognitive functioning, and the Canadian Occupational Performance Measure measuring the extent to which individual ADL treatment goals are met. Costs will be assessed using the PROductivity and DISease Questionnaire and a cost questionnaire. DISCUSSION: The study will yield results on the efficiency of an adapted care service for multi-trauma patients (SFTRS) featuring earlier (and condensed) involvement of specialised rehabilitation treatment. Results will show whether improved SFTRS logistics, combined with shorter stays in hospital and rehabilitation clinic and specialised early rehabilitation training modules are more (cost-) effective, relative to CTCS. TRIAL REGISTRATION: Current Controlled Trials register (ISRCTN68246661) and Netherlands Trial Register (NTR139)

    A development study and randomised feasibility trial of a tailored intervention to improve activity and reduce falls in older adults with mild cognitive impairment and mild dementia

    Get PDF
    Background: People with dementia progressively lose abilities and are prone to falling. Exercise- and activity-based interventions hold the prospect of increasing abilities, reducing falls, and slowing decline in cognition. Current falls prevention approaches are poorly suited to people with dementia, however, and are of uncertain effectiveness. We used multiple sources, and a co-production approach, to develop a new intervention, which we will evaluate in a feasibility randomised controlled trial (RCT), with embedded adherence, process and economic analyses. Methods: We will recruit people with mild cognitive impairment or mild dementia from memory assessment clinics, and a family member or carer. We will randomise participants between a therapy programme with high intensity supervision over 12 months, a therapy programme with moderate intensity supervision over 3 months, and brief falls assessment and advice as a control intervention. The therapy programmes will be delivered at home by mental health specialist therapists and therapy assistants. We will measure activities of daily living, falls and a battery of intermediate and distal health status outcomes, including activity, balance, cognition, mood and quality of life. The main aim is to test recruitment and retention, intervention delivery, data collection and other trial processes in advance of a planned definitive RCT. We will also study motivation and adherence, and conduct a process evaluation to help understand why results occurred using mixed methods, including a qualitative interview study and scales measuring psychological, motivation and communication variables. We will undertake an economic study, including modelling of future impact and cost to end-of-life, and a social return on investment analysis. Discussion: In this study, we aim to better understand the practicalities of both intervention and research delivery, and to generate substantial new knowledge on motivation, adherence and the approach to economic analysis. This will enable us to refine a novel intervention to promote activity and safety after a diagnosis of dementia, which will be evaluated in a definitive randomised controlled trial.\ud Trial registration: ClinicalTrials.gov: NCT02874300; ISRCTN 10550694

    The self-organizing fractal theory as a universal discovery method: the phenomenon of life

    Get PDF
    A universal discovery method potentially applicable to all disciplines studying organizational phenomena has been developed. This method takes advantage of a new form of global symmetry, namely, scale-invariance of self-organizational dynamics of energy/matter at all levels of organizational hierarchy, from elementary particles through cells and organisms to the Universe as a whole. The method is based on an alternative conceptualization of physical reality postulating that the energy/matter comprising the Universe is far from equilibrium, that it exists as a flow, and that it develops via self-organization in accordance with the empirical laws of nonequilibrium thermodynamics. It is postulated that the energy/matter flowing through and comprising the Universe evolves as a multiscale, self-similar structure-process, i.e., as a self-organizing fractal. This means that certain organizational structures and processes are scale-invariant and are reproduced at all levels of the organizational hierarchy. Being a form of symmetry, scale-invariance naturally lends itself to a new discovery method that allows for the deduction of missing information by comparing scale-invariant organizational patterns across different levels of the organizational hierarchy
    corecore