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Abstract  1 

1. Many marine industries may pose acute risks to marine wildlife. For example, tidal 2 

turbines have the potential to injure or kill marine mammals through collisions with 3 

turbine blades.  However, the quantification of collision risk is currently limited by a lack 4 

of suitable technologies to collect long-term data on marine mammal behaviour around 5 

tidal turbines.  6 

2. Sonar provides a potential means of tracking marine mammals around tidal turbines.  7 

However, its effectiveness for long-term data collection is hindered by the large data 8 

volumes and the need for manual validation of detections.  Therefore, the aim here was 9 

to develop and test automated classification algorithms for marine mammals in sonar 10 

data. 11 

3. Data on the movements of harbour seals were collected in a tidally energetic 12 

environment using a high-frequency multibeam sonar mounted on a custom designed 13 

seabed mounted platform.  The study area was monitored by observers to provide visual 14 

validation of seals and other targets detected by the sonar. 15 

4. A total of 65 confirmed seals and 96 other targets were detected by the sonar. 16 

Movement and shape parameters associated with each target were extracted and used 17 

to develop a series of classification algorithms.  Kernel Support Vector Machines (SVM) 18 

were used to classify targets (seal vs non-seal) and a series of cross-validation analyses 19 

were carried out to quantify classifier efficiency. 20 

5. The best-fit kernel SVM correctly classified all the confirmed seals but misclassified a 21 

small percentage of non-seal targets (~8%) as seals.  Shape and non-spectral movement 22 

parameters were considered to be the most important in achieving successful 23 

classification.  24 

6. Results indicate that sonar is an effective method for detecting and tracking seals in tidal 25 

environments and the automated classification approach developed here provides a key 26 
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tool that could be applied to collecting long term behavioural data around 27 

anthropogenic activities such as tidal turbines.  28 

KEYWORDS: ocean, monitoring, new techniques, behaviour, mammals, renewable energy  29 



   4 
 

1. Introduction 30 

Most marine environments have experienced growing industrialisation over the past several 31 

decades with increases in marine transportation, oil and gas exploration and extraction, and 32 

fisheries (Smith, 2000).  Many of the activities associated with these industries pose acute risks 33 

to marine wildlife; for example, marine mammals can be injured or killed as a result of vessel 34 

collisions (Vanderlaan & Taggart, 2007), fisheries gear entanglement (van der Hoop, Corkeron, 35 

& Moore, 2017), and fisheries bycatch (Read, Drinker, & Northridge, 2006).  In many cases, the 36 

nature and extent of these interactions can have important consequences for the demographics 37 

of affected populations and endanger the existence of some species (Read et al., 2006).   38 

More recently, a number of novel technologies are being deployed in the marine environment 39 

that have the potential to cause injury or mortality to marine species.  For example, tidal stream 40 

energy extraction is being rapidly developed in a number of countries; this is typically carried 41 

out using subsurface turbines that extract energy from tidally-driven moving water.  Although 42 

there are a wide range of different tidal turbine designs, the majority have moving horizontal 43 

axis rotors that operate in a similar fashion to wind turbines.  Concerns derive primarily from 44 

the potential for physical injury to marine mammals through direct contact with moving 45 

structures or parts of the devices (Wilson, Batty, Daunt, & Carter, 2007).  However, at present 46 

there is a paucity of data on the ‘fine-scale’ movements of marine mammals around potentially 47 

high-risk activities or structures such as tidal turbines to quantify the true nature of the risks 48 

associated with potential interactions (Hastie et al., 2017).   49 

One of the major challenges with collecting these data are the inherent difficulties associated 50 

with accurately measuring the movements of marine mammals underwater.  However, 51 

accelerated development of active sonar systems for the sub-sea monitoring of potential 52 

security threats for the defence sector, and for fisheries research and management, provide a 53 

basis for tracking animal movements and monitoring avoidance or evasion behaviour of animals 54 

around tidal turbines (Hastie et al., 2014).  The fundamentals of all active sonar systems are 55 
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essentially the same; pulses of sound (‘pings’) are produced electronically underwater using a 56 

sonar projector and the system then monitors for echoes of these pulses as they reflect off 57 

objects using a series of hydrophones (Hastie et al., 2014).  Active sonar has been used 58 

extensively in studies of marine mammal behaviour underwater (e.g. Benoit-Bird & Au, 2003a; 59 

Doksæter, Godo, Olsen, Nottestad, & Patel, 2009; Gonzalez-Socoloske & Olivera-Gomez, 2012; 60 

Nøttestad, Ferno, & Axelsen, 2002; Pyć, Geoffrey, & Knudsen, 2016) to track the movements of 61 

individual animals in a range of different habitats, and has provided insights into studies of 62 

diving behaviour, foraging mechanisms, and habitat selection.  For example, Nøttestad et al 63 

(2002) used a 95 kHz Simrad SA 950 multibeam sonar to measure the behaviour of fin whales 64 

(Balaenoptera physalus) foraging on herring schools, and Benoit-Bird & Au (2003a) used a 200 65 

kHz Kongsberg SM2000 to locate and track spinner dolphins (Stenella longirostris) in the water 66 

column in Hawaii.  Further, West Indian manatee (Trichechus manatus) behaviour was 67 

measured in waters with very poor visibility (due to turbidity and sediment load) using a range 68 

of side-scan sonar systems (Gonzalez-Socoloske, Olievera-Gomez, & Ford, 2009; Gonzalez-69 

Socoloske & Olivera-Gomez, 2012), and bottlenose dolphin (Tursiops truncatus) movements 70 

were tracked in high tidal flows using a 455 kHz Reson Seabat 6012 (Ridoux et al., 1997). 71 

Whilst sonar has been used effectively for behavioural studies of marine mammals, these have 72 

tended to be relatively short term in nature and interpretations of the sonar data can be 73 

validated with concurrent visual observations at the surface (e.g. Benoit-Bird & Au, 2003a; 74 

Benoit-Bird & Au, 2003b).  To be effective as a long-term behavioural monitoring tool, a number 75 

of potential limitations need to be overcome (Pyć et al., 2016).  Specifically, by their nature, 76 

encounters between anthropogenic sources (such as tidal turbines) and marine mammals are 77 

expected to be infrequent so long time-series of data would likely be required to meaningfully 78 

analyse risk.  However, data volumes from sonar systems are generally very high making it 79 

impractical to store data in the long term, and it is likely to be highly inefficient to manually 80 

review data post hoc to identify animals.  An effective means of automatically identifying marine 81 
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mammals and effectively reducing data volumes to a manageable size is therefore required for 82 

sonar to be efficient as a long term behavioural monitoring tool.   83 

In the current study, the potential of high-frequency multibeam sonar as a means of remotely 84 

collecting high resolution movement data for marine mammals is investigated.  Specifically, a 85 

series of sonar data of wild seals is collected to quantify the detection probability of seals and 86 

how this varies with range from the sonar.  A seabed mounted sonar system is then designed 87 

and built to collect a series of movement data for seals in tidally energetic environments; the 88 

temporal and spatial granularity of these movement data are then measured to determine their 89 

suitability for measuring the ‘fine scale’ movement behaviour of seals in close proximity to 90 

anthropogenic activities such as tidal turbines.  Further, the data were used as the basis for the 91 

development and validation of automated classification algorithms for seals.  The implications 92 

of the results for using sonar as a long term monitoring tool around anthropogenic activities, in 93 

particular tidal turbines, are discussed.  94 

 95 

2. Methods 96 

Sonar system  97 

Data on the movements of individual seals were collected using a high-frequency multibeam 98 

sonar system (Tritech Gemini 720id: Tritech International Ltd, Westhill, Aberdeenshire, UK).  99 

This is a forward looking multibeam sonar which provides information on sonar targets in the 100 

X-Y plane; it has a fundamental frequency of 720 kHz, a temporal resolution of approximately 101 

10 Hz (when imaging up to ranges of 60 m), an angular resolution of 0.5°, and a range resolution 102 

of 0.8 cm.  The horizontal swath width of the Gemini is 120° and the vertical beam is 20° (-3dB 103 

with a 10° downward tilt) (Parsons et al., 2017).  The sonar emits an acoustic signal 104 

approximately 70 μs in duration and has a source level of approximately 200 dB re 1μPa 105 
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(broadband) with a main lobe at 720 kHz (Parsons et al., 2017); for further details on the 106 

characteristics of the acoustic signal, see Electronic Supporting Information.  107 

Multibeam sonar data is processed and displayed using the Tritech Gemini software 108 

(http://www.tritech.co.uk/support-software/gemini-software-v12000).  This provides a 109 

display interface for data recording/ playback, screen capture, and range and gain control. 110 

Further, an automated target detection and tracking module (SeaTec) allows for the recording 111 

of information related to discrete objects in the sonar data that are within user-defined size and 112 

persistence bounds.  This uses a flood-fill algorithm approach (e.g. Law, 2013) to summarise the 113 

shape and intensity patterns exhibited by each target and, if the target is within the user-defined 114 

specifications, it records basic information to *.txt files on timings (hh-mm-ss), locations (X-Y 115 

coordinates), ranges from the sonar (m), and kinematic information (speed and trajectory in the 116 

X and Y planes) for all mobile targets detected in the data (Parsons et al., 2017). 117 

 118 

Detection of seals using sonar 119 

To measure the detection probability of seals with the SeaTec sonar target detection and 120 

tracking software (see Sonar system section), a series of sonar data of wild grey seals 121 

(Halichoerus grypus) were collected between the 6th and 20th of June, 2011, in waters adjacent to 122 

a haul out site on the east coast of Scotland (Tay Estuary: 56° 26' 43.95'' N, 2° 47' 28.48'' W) 123 

where up to 1,000 grey seals regularly haul out (around 100 were present during data 124 

collection).  Data were collected using a sonar deployed on a custom-built sonar mount from the 125 

side of a 7.5 m aluminium vessel and data were stored to external hard drives using a laptop PC 126 

located in the cabin of the boat. The boat was anchored approximately 200 m offshore and seals 127 

were imaged as they passed between the haul out and the open sea.  The water was relatively 128 

shallow (3-5 m) with a sandy seabed and tidal currents ranged from approximately 0.5-1.5 ms-1.  129 

Grey seals were imaged on the sonar appearing as distinct targets which were temporally 130 

persistent, and had highly localised patterns of high intensity pixels in the sonar images.  131 

http://www.tritech.co.uk/support-software/gemini-software-v12000
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The range (m) of each seal was manually measured in the sonar image data at one second 132 

intervals and the probability of detection was modelled with respect to range from the sonar.  133 

This was achieved using a Generalised Linear Model (GLM) with binomial errors and a logit link 134 

function.  The candidate predictor variable was mean range (m) of the seal from the sonar and 135 

the response variable was a categorical variable specifying whether the seal was detected by the 136 

SeaTec software (Yes=1, No=0).  GLM analyses were carried out using the stats package in R (R 137 

Core Team, 2012) and model diagnostics were assessed using the package car (Fox & Weisberg, 138 

2011).  Model selection was carried out using a Wald's Test (Hardin & Hilbe, 2003) to determine 139 

the covariates’ significance.   140 

 141 

Classification of seals in sonar data 142 

To develop and test classification algorithms for seals in sonar data, sonar data were collected in 143 

a narrow, tidally energetic channel on the west coast of Scotland (Kyle Rhea: 57°14'8.10"N, 144 

5°39'15.25"W).  The channel is approximately 4 km long, and 450 m wide (Hastie et al., 2017); 145 

water depths within the channel are generally less than 30 m and tidal currents can reach over 146 

4 ms-1 (Wilson, Benjamins, & Elliott, 2013). Between April and September, over 100 harbour 147 

seals (Phoca vitulina) routinely haul out on intertidal rocks along the sides of the channel and 148 

forage within the channel (Hastie et al., 2016).  149 

The sonar was mounted on a custom designed High Current Underwater Platform (HiCUP).  150 

This has a low profile tripod design (0.5 m high and 1.8 m from platform centre to end of each 151 

leg) and was based on calculations of turning moments and stability for a structure in a high 152 

tidal current.  The HiCUP was fabricated in box steel beams with 400 kg of lead ballast inside 153 

each of the legs, and had an overall weight of approximately 1,500 kg.  Overall, the HiCUP was 154 

designed to be stable on uneven seabed terrain and in tidal currents of up to 4 ms-1.  It was also 155 

designed to be deployable, to and from the seabed, by a relatively small non-specialist, vessel.  156 

The sonar was mounted in the centre of the HiCUP on a custom built sonar mount.  This 157 
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provided a secure mount for the sonar and, in the event that the HiCUP was deployed on uneven 158 

seabed terrain, allowed the sonar orientation to be manually adjusted in the pitch and roll axes 159 

to ensure that it was level (Figure 1). 160 

The sonar HiCUP was deployed from 1st to 5th of August, 2015, on the seabed (rocky with small 161 

boulders) towards the western shore of Kyle Rhea at a depth of approximately 15 m (relative to 162 

Admiralty chart datum) using the survey vessel MV Toohey (Figure 1).  A diver manually 163 

adjusted the pitch and roll of the sonar using a levelling bubble as reference immediately after 164 

deployment to ensure the sonar was level with respect to these axes.  The HiCUP was attached 165 

to a small surface marker buoy so that its location could be determined by visual observers 166 

during data collection.  A secondary 1,000 kg anchor was connected to the HiCUP via a chain 167 

running along the seabed and was located approximately 30 m inshore from the HiCUP.  A 168 

polysteel rope riser from the secondary anchor was connected to two subsurface mooring 169 

buoys (to ensure that the sonar cables were kept clear of the HiCUP and seabed, and reduce 170 

potential damage as a result of chafing) and to a surface mooring buoy where a 7.5 m aluminium 171 

vessel could be moored to collect data (Figure 2).  The sonar was connected to a 150 m power 172 

and communications cable with wet-mate terminations at each end.  The cable was attached to 173 

the chain from the HiCUP, the secondary anchor, and the rope riser using cable ties; these could 174 

be connected to the topside electronics of the sonar (Gemini 72V VDSL Adapter) and a laptop PC 175 

on the vessel for data collection.  176 

The data collection vessel was moored to the secondary anchor and data were collected during 177 

daylight flood tides, as seals in this area are most abundant during this time (Hastie et al., 2016).  178 

Sonar data were recorded continuously to the laptop PC.  Concurrent visual observations of 179 

seals and other targets at the surface (birds, seaweed, and hydrographic features) were made 180 

from the vessel to provide validation for sonar targets.  In practice, two observers on the vessel 181 

maintained a constant visual watch and the noted the timings (hh:mm:ss) and the estimated 182 

range (m) and bearing (degrees) of targets from the surface mooring buoy (assumed to be 183 

representative of the sonar location) on datasheets.  A third observer monitored the sonar 184 
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images and noted the timings (hh:mm:ss), and relative range (m) and bearing (degrees) of 185 

targets using a marker tool in the sonar software.  It should be noted that the sonar and visual 186 

observers were not blind to either dataset, and communication between the teams was 187 

maintained throughout to confirm the identity of targets observed on the sonar.  This ensured a 188 

high degree of certainty in the matching of observations. 189 

Data were collected over most of the flood tide period on each of the data collection days; 190 

however, at peak flow (>3 ms-1) difficulties associated with maintaining the vessel on the 191 

mooring in the high current meant that there were short breaks (around 90 mins) in monitoring 192 

over these periods.  A total of 574 min (265 files: 76 GB) of sonar data were collected for further 193 

analyses.      194 

To provide the data for the development and validation of classification algorithms for seals, a 195 

series of parameters were derived for mobile targets detected within the sonar data.  These 196 

were based on the standard outputs of the SeaTec software (see Sonar system section). Further, 197 

the SeaTec outputs were customized for this study to provide detailed information on the size 198 

and shape of each detection; these were recorded as a series of target intensity matrices of the 199 

detected target within a defined bounding box which were saved as *.txt files (e.g. Figure 3).   200 

A total of 161 targets detected by the SeaTec software were used for the classification algorithm 201 

development; based on temporal and spatial matching between the sonar data and visual 202 

observations, 65 of these were confirmed to be seals and 96 were non-seals. Non-seal targets 203 

were generally small scale turbulent hydrographic features and items of debris (e.g. seaweed).  204 

Each confirmed seal and non-seal target was summarised in terms of mean horizontal speed 205 

over ground (ms-1) and mean distance (m) from the sonar.  Further, to determine whether the 206 

tracks of seals produced by the detection and tracking software are of sufficient temporal and 207 

spatial granularity to measure the ‘fine-scale’ movement behaviour of seals in close proximity to 208 

anthropogenic activities such as tidal turbines, the time (ms) and distance (m) between 209 
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consecutive detections of seals in the XY plane was measured for all confirmed seal tracks and 210 

non-seal targets.   211 

Based on the summary kinematic information and the target intensity matrix information for 212 

each target, a total of 110 candidate features of the targets were extracted to be used in the 213 

classification algorithm development.  This included the temporal persistence of the target, 214 

summary statistics on the movement of the target (distance travelled, angle of movement, and 215 

proportion of static frames), the shape of the target (length, area, perimeter length, and their 216 

respective ratios), and pixel intensity of the targets. Shape features were extracted from the 217 

intensity matrices using the R package raster (version 2.4-15).  The mean, median, standard 218 

deviation, minimum, and maximum was computed for each feature.  In addition, spectral 219 

properties of all features, except persistence, were derived (spectral density, frequency and 220 

amplitude of the first and second peaks).  The spectral properties describe changes of the 221 

features through time, and are extracted from spectrograms generated by Fourier transforms of 222 

the features (Cryer & Chan, 2013).  For instance, the shape of a seal in the sonar data may 223 

change cyclically as it swims; this would appear as one peak frequency in the spectrogram of 224 

one or more shape features.  Spectral features were extracted using the R package stats (version 225 

3.2.1).  Finally, features with near-zero variance and those that were highly correlated to other 226 

features (r>0.9) were filtered out using the R package caret (version 6.0.64). Eighty-three 227 

features remained and were scaled prior to use in the analysis. 228 

A kernel Support Vector Machine (SVM) (Hastie, Tibshirani, & Friedman, 2009) was fitted to the 229 

data to classify targets using the R package kernlab (version 0.9-22).  SVMs have been applied to 230 

a wide range of pattern classification and function approximation applications in biology (Yang, 231 

2004). In the current study, it was used to classify the sonar targets into one of two classes (seal 232 

vs non-seal).  233 

Inputs to the classifier (features) are determined so that they represent each class well or so 234 

that data belonging to different classes are well separated in the input space (Abe, 2006).  SVMs 235 
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fit boundaries (support vectors) between classes in 2D space (pairs of features).  The number of 236 

support vectors can be increased by increasing the parameter “C” (cost of misclassification) to 237 

yield a better fit to the data.  However, using too many support vectors can result in over-fitting 238 

to the data and loss of generality.   239 

To avoid potential over-fitting, the parameter “C” was chosen to minimise cross-validation 240 

error.  A 20-fold cross-validation was performed for each parameter value: the data were split 241 

into 20 sub-samples, after which the algorithm was fitted using 19 sub-samples and validated 242 

using the remaining one.  This was repeated 20 times using each sub-sample in turn for 243 

validation.  The cross-validation error was thus the mean error rate in the 20 validation sub-244 

samples.  The algorithm was fitted with parameter “C” of 10(-1 to 6), and 100 times with each 245 

parameter value to estimate the uncertainty of the cross-validation error rate.  As there were 246 

more non-seal targets than seal targets, a balanced sample was generated using the sampling 247 

algorithm SMOTE (Chawla, 2002).  A new sample was generated using the R package unbalanced 248 

(version 2.0) for each of the 100 iterations.  The algorithm that had the lowest mean cross-249 

validation error was chosen as the best fitting model.  250 

The importance of individual features in the classifier can be challenging to extract because 251 

kernels are fitted in multi-dimensional space (combinations of features).  However, to 252 

determine which features are important, we compared the performance of classifiers fitted to 253 

different groups of features: all, only spectral, all except spectral, only pixel intensity, only 254 

shape, and only movement.   255 

 256 

3. Results 257 

Detection of seals using sonar 258 

A total of 62 grey seals were successfully imaged at ranges of between 5.0 and 80.0 m from the 259 

sonar.  Mean range of each of the individual seals varied from 15.5 to 79.0 m from the sonar.  260 
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The SeaTec software detected a total of 31 (50%) of the grey seals in the sonar data.  In general, 261 

the seals that were detected were closer to the sonar than those not detected; the mean range of 262 

seals detected varied from 15.5 to 56.0 m from the sonar, and the mean range of seals not 263 

detected varied from 21.0 to 79.0.   264 

The results of the model of detection probability of seals in the sonar data showed that there 265 

was a significant negative relationship between the mean range of seals from the sonar and the 266 

probability of detection (χ21 = 59.9, P<0.0001).  Inspection of the model predictions showed that 267 

the mean probability of the detection and tracking module successfully detecting a seal was 268 

greater than 0.95 for ranges up to approximately 33 m from the sonar; it then declined 269 

markedly to 0.5 at approximately 47 m and to below 0.05 at ranges greater than 59 m (Figure 270 

4). 271 

Classification of seals in sonar data 272 

Multibeam sonar data were collected successfully from the seabed mounted HiCUP in the tidally 273 

energetic channel.  The HiCUP maintained position on the seabed and the sonar was stable on 274 

its mount throughout the data collection period.   275 

Seals (confirmed through the visual observations) were successfully imaged using the sonar; 276 

mean distance of seals from the sonar HiCUP ranged from 15.3 to 59.8 m and peaked between 277 

40 and 45 m.  A range of other targets confirmed through the visual observations were also 278 

imaged; these included hydrographic features such as eddies, and drifting seaweed.  When 279 

expressed as a number of targets per minute of sonar data analysed, there were markedly fewer 280 

seals (0.11 min-1) than non-seal (1.48 min-1) targets.  The mean distance of non-seal targets 281 

ranged from 16.1 to 58.5 m and peaked between 15 and 20 m (Figure 5 and 6).  The mean 282 

velocity of confirmed seals ranged from 0.6 to 4.7 ms-1 and peaked between 2 and 2.5 ms-1. The 283 

mean velocity of other targets ranged from 0.3 to 4.5 ms-1 and peaked between 1 and 1.5 ms-1 284 

(Figure 5 and 6).  It should be highlighted that these results do not account for the underlying 285 
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water current speeds and therefore represent velocities over-ground rather than true speeds 286 

through the water.  287 

The majority (99.9%) of consecutive detections of seals within a track were less than or equal to 288 

1 second apart and all were less than 2 seconds apart.  The distance between consecutive 289 

detections of seals within a track was generally low; the majority (81%) of consecutive 290 

detections were less than 0.5 m apart and 95% of all consecutive detections were less than 0.9 291 

m apart.   292 

Results of the classification algorithm development and validation showed that the best fitting 293 

algorithm from the SVM had the parameter “C” = 1000; it yielded a mean cross-validation error 294 

of just under 6% using 110 support vectors.  The classification accuracy for the entire dataset 295 

based on the chosen algorithm was 100% for confirmed seal targets and 92% for non-seal 296 

targets (Table 2), with an overall accuracy of 95% (SD=1.6%).  A comparison of classification 297 

accuracy between classifiers fitted to different groups of features shows that the shape and non-298 

spectral movement features result in the lowest cross validation error (Table 3). 299 

 300 

4. Discussion 301 

This paper presents the results of a study which investigated the efficiency of a high frequency 302 

multibeam sonar system for the automated detection and tracking of seals.  Results show that 303 

seals can be reliably detected out to a range of several tens of metres and tracked with a high 304 

degree of spatial and temporal resolution.  Further, through the development of a series of 305 

classification algorithms, seals can be efficiently discriminated from other mobile targets in 306 

tidally energetic environments.   307 

The results of the analysis of detection probability of seals shows that the multibeam sonar is 308 

highly effective for detecting seals out to ranges of at least 33 m.  Beyond this range, the mean 309 

detection probability decreased markedly to below 0.5 at a range of 47 m, and below 0.05 at 310 
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ranges beyond 59 m.  This shows that the tracking of seals using high frequency multibeam 311 

sonar should be effective up to ranges of at least 30-40 m.  However, it should be highlighted 312 

that the detection probability tests were carried out in a relatively shallow environment and, 313 

although efforts were made to ensure the sonar transducer did not move during the calibration 314 

trials, it was deployed from a boat and automatic detection ranges and probabilities may have 315 

been compromised by seabed-induced acoustic clutter and transducer movement.  For example, 316 

interactions between the sonar signals and the seabed (through reflections and absorption) 317 

could potentially influence acoustic signal-noise ratios and reduce the probability of detecting 318 

targets in shallow waters (Ona & Mitson, 1996).  Given the orientation of the sonar and the 319 

water depth in the current study, acoustic signals would likely interact with the seabed at 320 

ranges beyond approximately 8-14 m from the sonar and detection probability of seals may 321 

have been compromised to a degree beyond this.  Although it would therefore seem reasonable 322 

to assume that stable deployments in deeper environments, would yield greater automatic 323 

detection efficiency, it is important to highlight that the high frequency characteristics (720 324 

kHz) of the sonar system tested here are likely to have fundamentally limited the detection of 325 

seals to tens of metres due to the absorption of high frequency sound in seawater (Fisher & 326 

Simmons, 1977).  From this perspective, further investigation of the detection efficiency of seals 327 

using other sonar systems (with different acoustic characteristics) in a range of different 328 

habitats and conditions may prove useful.     329 

In terms of the practicalities associated with collecting sonar data remotely from a seabed 330 

platform, the design of the HiCUP proved effective and confirms that marine mammal data can 331 

be collected reliably from a multibeam sonar on a remote seabed platform in a tidally energetic 332 

environment.  The spatial and temporal resolution of seal locations measured by the sonar on 333 

the HiCUP was relatively high with the majority of consecutive detections less than 1 s and less 334 

than 1 m apart, independent of range from the sonar.  This shows that seals can be tracked in 335 

the X-Y plane in tidal currents up to approximately 3 ms-1 with sub-metre spatial resolution.  336 

However, it is important to highlight that the multibeam sonar used here only provides 337 
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information on seal movements in the X-Y plane.  It is likely that information on the locations of 338 

the seal in 3D (X-Y-Depth) may be desirable in a range of different applications. To address this, 339 

recent research  has shown that the combination of the two multibeam sonars orientated in the 340 

same horizontal angle but offset vertically can provide an effective means of determining depth 341 

of seals and may be an effective means of tracking seals in 3D (Hastie et al., In press). 342 

The results of the classification analyses show that it is possible to effectively discriminate 343 

between seals and non-seals in multibeam sonar data with a relatively high degree of accuracy.  344 

The kernel SVM algorithm developed here correctly classified all the confirmed seal targets but 345 

misclassified a relatively small percentage of non-seal targets (~8%) as seals.  If this result 346 

holds with future datasets, the analytical approach appears to be an effective means of 347 

detecting, classifying, and tracking seals.  However, it should be highlighted that the 348 

classification analyses here were carried out on a dataset from a single location and tidal phase 349 

and, although this is likely to represent a relatively challenging dataset for the classification of 350 

seals (i.e. it was collected in a highly mobile environment with numerous mobile targets), it is 351 

unclear how the classifiers would perform in markedly different habitats or oceanographic 352 

conditions.  It would therefore be useful to expand the data collection and classification 353 

validation to a range of different sites and conditions.  It is also important to highlight that the 354 

density of seals present in the study area is relatively high compared to most coastal habitats 355 

(Hastie et al., 2016); it is therefore likely that, in most applications, the number of non-seal 356 

targets will be far greater than the number of true seals targets.  Therefore, an 8% 357 

misclassification of non-seal targets has the potential to result in a relatively high number of 358 

false positive classifications and, in practical terms, relatively high levels of post hoc manual 359 

validation of targets.  Nevertheless, the aim here was to improve the data reduction without 360 

significantly reducing the probability of detecting marine mammals and, from this perspective, 361 

the approach appears successful.  362 
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Further development of the classifiers (with more validated targets) could potentially increase 363 

the accuracy and further reduce the potential for false positive detections.  Although 364 

comparison of the classifiers using different subsets of features suggests that simple summary 365 

statistics about the movement of targets may be sufficient to classify seals, additional target 366 

information may also help in the classification process.  For example, depth information and 367 

movement in the depth plane of targets may significantly improve the accuracy; this is based on 368 

the supposition that seals, unlike objects moving passively with the water current, regularly 369 

exhibit vertical movement in the water column whilst diving (Hastie et al., In press). 370 

Classification accuracy may also be improved through the integration of other sensor systems 371 

on the platform.  For example, passive acoustic monitoring (PAM) has proven to be highly 372 

effective for the detection and classification of vocally predictable marine mammals.  Dolphins 373 

and porpoises in particular produce echolocation clicks for navigation and finding prey and 374 

PAM has been used extensively to detect and classify these species (Chappell, Leaper, & Gordon, 375 

1996; Gillespie et al., 2008).  The combination of multibeam sonar and PAM systems would 376 

appear to be highly complementary and would potentially provide an effective means of 377 

differentiating seals from dolphins and porpoises in sonar data.   378 

In the current study, the classification algorithms were based a series of target geometry (size 379 

and shape) and kinematic metrics produced using a specific multibeam sonar system; however, 380 

there are increasing numbers of active sonar systems commercially available (Hastie, 2012) 381 

which could, in theory, also measure these metrics.  Despite this, the wide range of acoustic 382 

signal characteristics and processing approaches by different sonar systems would likely mean 383 

that further work would be required to provide geometry and kinematic metrics analogous to 384 

those collected in the current study.  It would therefore be useful to collect further marine 385 

mammal data with a range of other sonar systems and formally evaluate the effectiveness of the 386 

classification approach with these data.   387 

Overall, the hardware design and the detection and classification results are positive from the 388 

perspective of monitoring seals around tidal turbines over extended periods and suggests that 389 
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sonar mounted on a platform in the vicinity of a turbine could be used to efficiently collect data 390 

on seal movements.  The HiCUP proved to be stable during the data collection in current speeds 391 

estimated up to approximately 3 ms-1 which is similar to the higher current speeds anticipated 392 

at proposed tidal energy development sites (Goddijn-Murphy, Woolf, & Easton, 2013; Wilson et 393 

al., 2013).  Further, seals were automatically detected to ranges of several tens of metres from 394 

the HiCUP and recorded locations with sub-metre resolution.  From the perspective of tracking 395 

seals in close vicinity to operational tidal turbines, this would appear to be of sufficient accuracy 396 

to determine whether a turbine blade and seal were in the same place at the same time.  397 

However, it is important to consider potential issues related to tracking seals in close vicinity to 398 

a tidal turbine; for example, acoustic reflections or shadowing from the turbine structure may 399 

influence detection and classification probabilities, particularly for targets at close range to the 400 

rotors.  The most effective configuration is likely to be a sonar mounted on a platform located at 401 

approximately 30 m from the turbine which would maximise the vertical sonar coverage whilst 402 

ensuring that detection probability remains high.  Although likely dependent upon turbine 403 

design and location, it would seem most efficient to locate the sonar perpendicular to the tidal 404 

flow direction and oriented so the turbine is approximately mid-frame.  This would effectively 405 

provide the best coverage of the turbine and the water column in both the upstream and 406 

downstream directions and would likely maximise the data available for effective detection, 407 

classification, and tracking.  More widely, such an approach would complement the range of 408 

available technologies for detecting and tracking other species such as fish or seabirds and 409 

extends the capacity for multi-species environmental monitoring around tidal turbines (Joslin, 410 

Polagye, & Parker-Stetter, 2014; Viehman & Zydlewski, 2017; Williamson et al., 2016; 411 

Williamson et al., 2017).  The application of these technologies alongside operational tidal 412 

turbines is clearly now required to provide information on the movements of seals around tidal 413 

turbines and quantify the true environmental risks posed by tidal turbine developments.   414 

The results presented here also provide the basis for a monitoring tool in a range of other 415 

research or conservation applications where information on the presence and numbers of seals 416 
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at discrete locations of interest is required.  For example, management of potential impacts of 417 

seals foraging on salmonid species in rivers requires information on the temporal variation in 418 

presence and numbers of seals within river systems over long periods (Graham, Harris, 419 

Matejusová, & Middlemas, 2011).  Further, behavioural research into high resolution swimming 420 

kinematics and dive behaviour of seals could benefit greatly from the kinds of detection and 421 

tracking information collected using sonar systems such as the one tested here (e.g. Hastie et al., 422 

In press).  There is also the potential that the approach could be used to increase the efficiency 423 

of mitigation around high-risk activities.  For example, fish predation by seals at marine 424 

aquaculture sites is often perceived as problematic from a commercial perspective (Quick, 425 

Middlemas, & Armstrong, 2004).  This has led to the use of Acoustic Deterrent Devices (ADDs) 426 

in an effort to deter seals from fish cages; however, the increasing use of these devices has led to 427 

concerns about long terms effects on non-target species such as cetaceans  (Findlay et al., 2018; 428 

Nowacek, Thorne, Johnston, & Tyack Peter, 2007).  In theory, the detection and classification 429 

capabilities of multibeam sonar shown in the current study provide the basis to target ADD use 430 

to times when seals were detected, thereby reducing unnecessary acoustic emissions.  In 431 

practice, for such real-time monitoring and mitigation, the effective integration of the sonar, 432 

processing PC, and ADD technologies would be required, together with a series of software 433 

developments such that the classification algorithms could be run in real time and the results 434 

used to trigger the ADD when a seal was detected.   435 

5. Conclusions 436 

The results presented here showed that high-frequency multibeam sonar is highly effective for 437 

detecting seals out to ranges of several tens of metres, and that post-hoc classification analyses 438 

are highly effective at identifying seals but misclassified a small percentage of non-seal targets 439 

(~8%) as seals.  This makes it an efficient means for reducing data volumes to manageable sizes 440 

and provides the basis of an efficient long-term monitoring tool for identifying and tracking 441 

individual seals in discrete locations.  From a conservation and management perspective, the 442 
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approach shows promise for monitoring marine mammal movements around potentially high 443 

risk anthropogenic activities or structures such as tidal turbines.  444 
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Tables 578 

Table 1: Fitting the parameter “C” for the kernel Support Vector Machine algorithm. Values for 579 

the cross-validation (20-fold) and the number of support vectors are the mean and SD for 100 580 

iterations. The selected model is shown in bold. 581 

Parameter “C” 

Cross-validation error Number of support vectors 

Mean (SD) Mean (SD) 

0.1 0.610 (0.016) 260 (0) 

1 0.120 (0.018) 166 (6.4) 

10 0.067 (0.014) 119 (6.0) 

100 0.059 (0.012) 111 (6.9) 

1000 0.057 (0.012) 110 (5.9) 

10000 0.059 (0.012) 110 (6.8) 

100000 0.059 (0.012) 111 (6.4) 

1000000 0.058 (0.012) 112 (6.1) 

  582 
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 583 

Table 2: Classification of the entire dataset (161 targets) using the fitted kernel Support Vector 584 

Machine algorithm. Values in the confusion matrix are mean (SD) frequencies of the 100 585 

iterations. 586 

 Classified Seal Classified Non-seal 

Confirmed seals (N=65) 65 (0) 0 (0) 

Non-seal targets (N=96) 7.7 (2.5) 88.3 (2.5) 

  587 
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Table 3. Performance of kernel Support Vector Machine classifiers fitted with different subsets 588 

of features. Cross-validation error is the proportion of incorrect classifications (mean and SD of 589 

20-fold cross-validation error over 100 iterations). N is the number of features included in each 590 

classifier after excluding near-zero variance and highly correlated features.  The mean (SD) 591 

number of support vectors is also shown to indicate the complexity of the classifier. 592 

 593 

  594 

Features 

 

Cross-validation error 

 Number of support 

vectors 

N Mean (SD)  Mean (SD) 

All 83 0.057 (0.012)  110 (5.9) 

Non-spectral 26 0.073 (0.014)  101 (5.5) 

Spectral only 57 0.180 (0.013)  129 (7.3) 

Pixel intensity 23 0.179 (0.030)  158 (7.9) 

Shape 36 0.091 (0.017)  100 (5.8) 

Movement 23 0.072 (0.015)  93 (5.0) 

        - spectral 13 0.242 (0.016)  139 (4.4) 

        - non-spectral 15 0.086 (0.015)  104 (4.8) 
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 595 

Figure 1: The left panel shows a map of the coastal channel with the location (black point) of the 596 
High Current Underwater Platform (HiCUP); the map is colour coded to illustrate water depth.  597 
The right panel shows a photograph of the deployment of the HiCUP from the stern of the 598 
survey vessel. 599 
  600 
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 601 
 602 

 603 

Figure 2: Schematic of the sonar mounted on the High Current Underwater Platform (HiCUP) 604 
mooring deployed in a tidally energetic channel.  The figure shows the seabed mounted HiCUP, 605 
the secondary anchor with dual subsurface floats, the small HiCUP locating surface buoy, and 606 
the data collection vessel.  The arrow indicates the general flow direction of the water current.  607 
 608 
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 609 

Figure 3: (A) Example of the data from the seabed mounted Tritech Gemini in a tidally energetic 610 
channel showing a harbour seal in the yellow bounding box (confirmed through concurrent 611 
visual observations).  Examples of the target intensity matrices produced as part of the target 612 
detection process for a sequence of detections for one confirmed seal over 5 consecutive frames 613 
(B) and sample images from five different non-seal targets (C).  The matrices are colour coded 614 
by relative pixel intensity and the blue arrows represent the velocity of moving targets. 615 
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 616 

Figure 4: The probability of the detection and tracking module (SeaTec) successfully detecting 617 
seals.  The figure shows the predicted relationship between range (m) and the mean probability 618 
(± 95% CIs) of detection from the binomial Generalised Linear Model.  The mean probability 619 
was greater than 0.95 for ranges up to approximately 33 metres, 0.5 at approximately 47m and 620 
less than 0.05 at ranges greater than 59 metres.  The grey dashed lines illustrate these 621 
associated ranges (m) at a 0.95, 0.5, and 0.05 mean probability of detection 622 
 623 
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 624 

 625 

Figure 5: The XY tracks of a series of targets detected during the deployment of the multibeam 626 
sonar on the HiCUP in a tidally energetic channel. Each panel shows the XY locations of targets 627 
that were automatically detected and tracked using the Tritech SeaTec target tracking software.  628 
The upper panel shows the tracks of targets that were confirmed as seals through visual 629 
observations of animals made from the boat, and the lower panel shows other targets that were 630 
identified as turbulence or items of debris. 631 
 632 
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 633 

Figure 6: Distributions of (A) the mean distances (m) of confirmed seals and non-seal targets 634 
from the sonar HiCUP, and (B) the mean velocities (ms-1) of confirmed seals and non-seal 635 
targets. 636 
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 637 

Figure 7: Distribution of the distances (metres) between consecutive sonar detections of seals. 638 


