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Abstract

This paper presents a day-ahead optimal energy management strategy for economic operation of industrial microgrids
with high-penetration renewables under both isolated and grid-connected operation modes. The approach is based on a
regrouping particle swarm optimization (RegPSO) formulated over a day-ahead scheduling horizon with one hour time
step, taking into account forecasted renewable energy generations and electrical load demands. Besides satisfying its local
energy demands, the microgrid considered in this paper (a real industrial microgrid, “Goldwind Smart Microgrid System”
in Beijing, China), participates in energy trading with the main grid; it can either sell power to the main grid or buy from
the main grid. Performance objectives include minimization of fuel cost, operation and maintenance costs and energy
purchasing expenses from the main grid, and maximization of financial profit from energy selling revenues to the main
grid. Simulation results demonstrate the effectiveness of various aspects of the proposed strategy in different scenarios. To
validate the performance of the proposed strategy, obtained results are compared to a genetic algorithm (GA) based
reference energy management approach and confirmed that the RegPSO based strategy was able to find a global
optimal solution in considerably less computation time than the GA based reference approach.

Keywords: Energy management, Genetic algorithm, Microgrid, Regrouping particle swarm optimization, Renewable
energy
1 Introduction
Microgrids are a group of interconnected loads, distrib-
uted energy resources (including conventional energy
sources and renewables) and energy storage systems at a
distribution level with distinct electrical boundaries. A
microgrid has black start capability and can operate either
in isolated or non-isolated mode in connection with other
microgrids or main electricity grid.
Non-isolated (grid-connected) microgrids can either send

(sell) power to the main grid or receive (buy) from the main
grid. This electric power trading with the main grid has
traditionally been based on a fixed, pre-determined price
per kWh. However, with the incorporation of smart meter
technologies, capable of accurately measuring energy pro-
duction and consumption in each time instant, a shift to
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time-varying electricity pricing models is being occurred re-
cently [1]. Advanced control technologies that can combine
together several generation systems and energy storage sys-
tems in microgrid entity are emerging to offer customers
the opportunity to access reliable and secured electricity lo-
cally, sell power during surplus generation or peak grid
price time periods, and buy power in case of generation
scarcity or cheap electricity prices time instants.
This energy exchange strategy development motivates

microgrid operators to adapt their energy trading actions
with the main grid and/or other microgrids according to
the current electricity price and trading conditions in order
to minimize energy production running cost (fuel cost),
ensure maximum utilization of renewables, maximize
economic benefits of the energy storage systems. To
achieve this, specific energy management system should
have to be put in place [1–4].
The topic of optimization (cost minimization or profit

maximization) in microgrids through energy management
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has already been dealt with by several researchers in
different contexts.
An energy management model, with sensitivity analysis

for energy storage capacity investment and electricity load
demand growth, for searching optimum operating policies
for maximization of profit in a microgrid system in
Taiwan is presented in [5]. In [6], the minimization of total
costs for energy production and transportation of two in-
terconnected microgrids that can trade electric energy
with each other but not connected to the main power grid
is addressed. For this aim, a distributed and a central con-
trol strategy are examined using an iterative approach and
an analytical convex optimization method.
Concerning the issue of energy exchange of a microgrid

with the main power grid, [7] targets on the develop-
ment of a neural network based energy management
system (EMS) to allocate the dispatch of generation
sources in a microgrid to take part in the energy trad-
ing market and minimize global energy production
costs. Reference [8] introduces an energy control
apparatus called “Energy Box” for controlling re-
sidential home or small business electrical energy
utilization in an environment of demand sensitive
real-time electricity pricing. A stochastic dynamic pro-
gramming method is employed based on forecast in-
formation from load demands, weather, and grid price
for optimally managing the utilization, storage and
selling/buying of electrical energy. Reference [9] sug-
gests an optimization model based on hierarchical
control for a microgrid configuration capable of par-
ticipating to the wholesale energy trading market as
both energy consumer and producer with the objective
of minimizing energy production costs and maximiz-
ing energy trading revenues.
Fig. 1 Microgrid architecture and system model
Reference [10] proposes a generic mixed integer linear
programming technique for operating cost minimization
in market-based price environments for a residential
microgrid including electrical and thermal loads, energy
storage units and some controllable loads. Reference [11]
presents an online optimal energy/power control strategy
for the operation of energy storage in grid-connected
microgrids. The approach is based on a mixed-integer-lin-
ear-programming formulated over a rolling horizon
window, considering predicted future electricity load de-
mands and renewable energy generations.
Reference [12] presents a genetic algorithm (GA) for op-

timal unit sizing of an isolated microgrid considering mul-
tiple objectives including life-cycle cost minimization,
renewable energy penetration maximization, and emission
reduction. In [13, 14], particle swarm optimization (PSO)
has been applied for real-time energy management of
stand-alone microgrids.
In most of the literatures reported above, regarding

energy management strategies in microgrids, a single en-
ergy storage unit is considered. The integration and com-
bined optimal storage management of microgrids
containing two or more energy storage units (ESUs) have
not been considered so far. Moreover, the PSO is seen to
suffer from stagnation once particles have prematurely
converged to any particular region of the search space in
the energy management strategies that have applied the
standard version of PSO for solving the energy manage-
ment optimization problem [15].
An actual industrial microgrid (Goldwind Smart Mi-

crogrid System), in Beijing, China, is considered to deliver
the power demand requirements of the various loads
within an industrial park (Goldwind Science and Etechwin
Electric. Co., Ltd.), shown in Fig. 1. It comprises of wind
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energy conversion system (WECS) that utilizes a perman-
ent magnet synchronous generator (PMSG), three solar
PV systems, diesel generator (DE) and energy storage sys-
tem (ESS) containing two storage batteries, vanadium
redox flow battery (VRB) and lithium-ion (Li-Ion) battery.
The super capacitor energy storage, shown in Fig. 1, is
used for transient energy balance compensation, not for
steady state energy storage, and hence it is not included in
the optimization model. The microgrid is connected to
the main grid through a 10 kV bus at the point of com-
mon coupling (PCC). The microgrid operates under both
isolated and non-isolated modes. The microgrid is in
islanded mode when the power switch (PCC main switch)
between the PCC bus and the main grid is disconnected
and in non-isolated mode when this switch is turned on.
The actual ratings of the components as shown in Fig. 1
are used in this paper.
In this paper, we propose a RegPSO approach to opti-

mally solve the EMS optimization model. To evaluate
and compare the performances of this approach, another
modern optimization method, genetic algorithm (GA)
was also implemented.
The rest of the paper is organized as follows. Section II

discusses the formulations of the objective and constraint
functions. In Section III, the proposed method of optimal
energy management strategy and the RegPSO algorithm
are presented. The case study simulation results are
discussed and performance comparisons are provided in
Section IV, and finally the paper is concluded in Section V.

2 Discussion
2.1 Microgrid energy management optimization model
The objective problem and constraint functions of the
optimization model for energy management in the
microgrid considering the two possible operation modes
are formulated in this section. In the isolated mode, the
microgrid objective is formulated to minimize the energy
production cost (fuel cost), and the operation and main-
tenance costs within the microgrid. While operating in
grid-connected mode, the microgrid can either send
(sell) power to the main grid or receive (buy) from the
main grid. During the periods receiving power from the
main grid, the microgrid is expected to minimize the en-
ergy production cost, operation and maintenance cost
and the expense of buying power from the main grid;
while sending power to the main grid, the objective is to
maximize the profit which is the energy selling revenue
minus the energy production cost, and operation and
maintenance cost.
This objective function is subjected to six decision

variables: the charging/discharging power of the
VRB, state of charge (SOC) of the VRB, charging/
discharging power of the Li-Ion battery, SOC of the
Li-Ion battery, the diesel generator power output,
and the quantity of power exchange with the main
grid.

2.2 Formulation of objective functions
The following are some of the information that should
be specified in advance for a day-ahead energy manage-
ment in microgrids [16, 17]:

� 24-h-ahead hourly load demand forecast
� 24-h-ahead hourly wind power forecast
� 24-h-ahead hourly PV power forecast
� Grid price forecast, or pre-specified grid price

The objective functions are formulated independ-
ently by considering three operational cases based on
the microgrid operating mode and the power flow di-
rections between the microgrid and the main grid. In
case I, the objective function for the isolated mode of
operation is considered. In case II, the microgrid is in
grid-connected mode and it receives (buys) power
from the main grid. While in case III, the microgrid
is also in grid-connected mode but it sends (sells)
power to the main grid.

2.2.1 Case I – isolated mode
In case I, the objective targets to minimize the energy
production cost (fuel cost), and the operation and main-
tenance costs within the microgrid.
The objective function is given by:

Min
Xn
t¼1 f Xm

i¼1

Fi Pi tð Þð Þ:τi tð Þ þ SCi tð Þð Þþ

Xm
i¼1

COM;i tð ÞPi tð Þ þ COMwind tð ÞPwind tð Þ þ

COMpv tð ÞPpv tð Þ þ
Xq
j¼1

COMes;j tð ÞPes;j tð Þg 1ð Þ

Where, n is the number of time steps for a sched-
uling day; m indicates the number of all types of dis-
patchable DGs; q is the number of all types of energy
storage units within the microgrid; Pi(t) is the power
output of the ith dispatchable DG at time t and
Fi(Pi(t)) is the corresponding fuel cost function, and
for a diesel generator it is defined as:

Fi Pi tð Þð Þ ¼ ai:Pi tð Þ2 þ bi:Pi tð Þ þ c ð2Þ
Where, ai, bi and ci are the cost function

parameters.
τi(t) = 1, if the ith dispatchable DG is in operation;
τi(t) = 0, if the ith dispatchable DG is OFF at time t;
SCi(t) is the start up cost function of each dispatchable

DG and is given by:
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SCi tð Þ ¼ sci; if τi tð Þ −τi t−1ð Þ ¼ 1

SCi tð Þ ¼ 0;

otherwise
Where, sci is the start up cost of dispatchable

DG i.
cOM,i(t) is the operation and maintenance cost of the

ith dispatchable DG at time t; cOMwind(t) is the operation
and maintenance cost of the wind power generation sys-
tem at time t; Pwind(t) is the forecasted wind generation
at time t; cOMpv(t) is the operation and maintenance cost
of the PV system at time t; Ppv(t) is the forecasted PV
generation at time t; COMes,j(t) is the operation and
maintenance cost of the jth energy storage unit at time t;
Pes,j(t) is the jth energy storage charging/discharging
power at time t.
2.2.2 Case II – Non-isolated mode - buying power from
main grid
In this case, the objective aims in minimizing the energy
production cost, the operation and maintenance costs
and the expenses of energy purchasing from the main
grid.
The objective function is:

Min
Xn
t¼1 f cgridbuy tð ÞPgrid tð Þ þ

Xm
i¼1

Fi Pi tð Þð Þ:τi tð Þ þ SCi tð Þð Þ þ

Xm
i¼1

COM;i tð ÞPi tð Þ þ COMwind tð ÞPwind tð Þ þ

COMpv tð ÞPpv tð Þ þ
Xq
j¼1

COMes;j tð ÞPes;j tð Þ
g 3ð Þ

Where, cgridbuy(t) is the electricity buying price from
the main grid at time t; Pgrid(t) is the power purchased
from the main grid at time t, Pgrid(t) > 0.
2.2.3 Case III - Non-isolated mode - selling power to main grid
Here, the objective aims in maximizing the profit which
is the energy selling revenue minus the energy produc-
tion cost and the operation and maintenance costs
within the microgrid.
The objective function becomes
Max
X
t¼1

n f−cgridsell tð ÞPgrid tð Þ−fXm
i¼1

Fi Pi tð Þð Þ:τi tð Þ þ SCi tð Þð Þ þ
Xm
i¼1

COM;i tð ÞPi tð Þþ

COMwind tð ÞPwind tð Þ þ COMpv tð ÞPpv tð Þ þ
Xq
j¼1

COMes;j tð ÞPes;j tð Þgg 4ð Þ

Where, cgridsell(t) is the electricity selling price to the
main grid at time t; Pgrid(t) is the power sold to the main
grid at time t, Pgrid(t) < 0.
2.3 Formulation of constraint functions
The objective functions formulated above are subjected
to the following constraints; comprising ESS units’ cap-
acity and operational limits, dispatchable DGs’ power
limit, grid power transfer limits, and all other technical
requirements in the microgrid:

2.3.1 Power output of the ith dispatchable DG at time t

Pmin
i tð Þ≤Pi tð Þ≤Pmax

i tð Þ ð5Þ

2.3.2 Grid power exchange limits

Pmin
grid tð Þ≤Pgrid tð Þ≤Pmax

grid tð Þ ð6Þ

The grid power exchange minimum ( Pmin
grid tð Þ ) and

maximum (Pmax
grid tð Þ) limits can be set as a large amount

or the capacity of the transformer linking the microgrid
and the main grid.

2.3.3 Demand-supply balance

Xm
i¼1

Pi tð Þ þ
Xq
i¼j

Pes;j tð Þ ¼ Pload tð Þ−Pwind tð Þ−Ppv tð Þ−Pgrid tð Þ

ð7Þ

where Pload(t) denotes the forecasted load demands at
time t.

2.3.4 ESS units charging/discharging power limits

Pmin
es;j tð Þ≤Pes;j tð Þ≤Pmax

es;j tð Þ ð8Þ

Pes,j(t) > 0, the ith energy storage is discharging;
Pes,j(t) < 0, the ith energy storage is charging;
Pes,j(t) = 0, the ith energy storage is inactive.

2.3.5 ESS units dynamic operation performance

SOCes;j t þ 1ð Þ ¼ SOCes;j tð Þ−ηes;j tð ÞPes;j tð Þ
Ces;j

ð9Þ

SOCmin
es;j ≤SOCes;j t þ 1ð Þ≤SOCmax

es;j

Where, ηes,j(t) is the ith energy storage unit charging or
discharging efficiency at time t; Ces,j denotes the rated
storage capacity of jth energy storage unit.
Thus, the decision variables that need to be deter-

mined are the ESUs’ charging/discharging power
Pes,j(t) and their state of charges SOCes,j(t) (for i =1,
2, …, q); the power output of dispatchable DGs
Pi(t),and the quantity of power exchange with the
main grid Pgrid(t) at time t.
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3 Method
3.1 Proposed microgrid energy management strategy
The purpose of the EMS is to make secure day-ahead
decisions for the microgrid economic operations. The
proposed system takes into account the intermittency
of renewable generations, the fluctuations of load de-
mands, the energy production fuel cost, operation and
maintenance costs of different sources, technical re-
strictions and capacity limits, time-varying grid prices,
and the energy trading revenue possibilities with the
main grid. Figure 2 illustrates the information flows of
the proposed system, in which an EMS converts to
output commands for energy storage units’ optimal
charging/discharging power, diesel generator power
output, and main grid import/export power quantities.
Decisions are based primarily on renewable generation
and load demand forecasts, energy production fuel
cost and electricity prices in the main grid. These de-
cisions are generated in this paper for a day-ahead
time horizon on 1 hour interval basis.
The EMS in this study is restricted to control only the

real power. Power quality, frequency regulation, and
voltage stability are supposed to be controlled at the
Fig. 2 Information flow in the proposed EMS
generation level. Microgrid black start operation or
synchronization with the main grid is not considered ei-
ther. The proposed system comprises functions, such as
an energy storage units charging/discharging power eco-
nomic scheduling, diesel generator output power opti-
mal scheduling, forecasting for renewable generators
and load demands, and energy trading participation with
the main grid.

3.2 The RegPSO algorithm
PSO has few variables to update and is simple to imple-
ment. Many researches and applications have been suc-
cessfully implemented using the PSO concept. Reference
[18] presents a general idea of PSO and its applications
in power systems, and also gives comparisons with other
optimization methods.
For a decision vector x ∈ℜn consisting the objective

problem’s decision variables (positions), the feasible de-
sign search space is defined by a subset [17]:

Ω ¼ xL1; x
U
1

� �� xL2 ; x
U
2

� ��…� xLn; x
U
n

� �
⊂ℜn ð10Þ

where xLj and xUj are, respectively, the lower and upper

bounds of the design search space along dimension j for
j = 1, 2, …, n.
The position or coordinate of the ith particle in the kth

iteration is give by:

xi kð Þ ¼ xi k−1ð Þ þ vi kð Þ; i ¼ 1; 2; …; N ð11Þ

where N is the swarm size and vi(k) is the velocity of
the ith particle at the kth iteration which shows the rate
of change of particle’s position in the design search
space, and given by:

vi kð Þ ¼ ω kð Þvi k−1ð Þ þ c1r1 Pbest;i−xi k−1ð Þ� �
þc2r2 Gbest−xi k−1ð Þð Þ ð12Þ

where, ω(k) is a dynamic inertia weight whose value
declines linearly with the iteration number to dampen
the velocities over iterations, enabling the swarm to con-
verge more precisely and efficiently, and given by:

ω kð Þ ¼ ωmax−
ωmax−ωmin

kmax

� �
:k ð13Þ

where ωmax and ωmin are the initial and final inertia
weight values, respectively, kmax is the maximum
number of iterations used; c1 and c2 are the cognitive
and social learning rates respectively, and r1 and r2
are random numbers in the range of 0 and 1. The pa-
rameters c1 and c2 represent the relative importance
of the position (memory) of the particle itself to the
position (memory) of the swarm; pBest or Pbest,i is
the best position achieved so for by particle i, while
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gBest or Gbest is the global best position of all the
particles in the swarm.
However, PSO is seen to suffer from stagnation

when particles have prematurely converged to any
specific region of the design search space [15]. The
proposed RegPSO circumvents this stagnation prob-
lem by automatically reorganizing the swarm when
premature convergence is detected or when the max-
imum number of iterations or function evaluations per
grouping is reached [19]; this liberates particles in the
swarm from the state of premature convergence, thus
enabling continued exploration toward the true global
minimum solution. This is computationally simple yet
effective improvement to the conventional PSO algo-
rithm. RegPSO has been tested experimentally over
popular benchmark optimization problems and suc-
cessfully approximates the global minimum of these
benchmark problems [15]. The flowchart in Fig. 3
shows the general working principle of the RegPSO
algorithm.
At each iteration, k, the swarm radius, δ(k), is considered to

be the maximum Euclidean distance, in n-dimensional search
space, of any particle from the global best solution as follows:

δ kð Þ ¼ max
i∈ 1;2;…;Nf g

xi kð Þ−Gbestk k ð14Þ

where||.|| represents the Euclidean norm.
Let diam(Ω) = ‖range(Ω)‖ be the diameter of the de-

sign search space. Particles are considered to be in prox-
imity and regrouping is activated when the normalized
swarm radius, δnorm, satisfies the premature convergence
condition defined as:

δnorm ¼ δ kð Þ
diam Ωð Þ < ε ð15Þ

where ε, called the stagnation threshold.
When premature convergence is noticed as given by

condition (15), the swarm is regrouped in a designed
search space centered about the global best solution.
The regrouping factor found to work well across bench-
marks tested [15], given by (16), is constant across
groupings.

ρ <
6
5ε

ð16Þ

Upon detection of premature convergence, the range
in which particles are to be regrouped about the global
best is computed per dimension as the minimum of (i)
the original range of the design search space on dimen-
sion j and (ii) the product of the regrouping factor with
the maximum distance along dimension j of any particle
from global best:
rangej Ω
rð Þj ¼ min rangej Ω

0
� �

j; ρ max
i∈ 1;…;Nf g

xr−1i;j −G
r−1
best;j

��� ���
� �

ð17Þ
The swarm is then regrouped by reinitializing particles’

position as:

xi ¼ Gbestr−1 þ r!0
:range Ωrð Þ− 1

2
range Ωrð Þ ð18Þ

where, range(Ωr) = [range1(Ω
r),…, rangen(Ω

r)] which

utilizes a random vector r!0
to randomize particles

within the implicitly defined design search space:

Ωr ¼ x1L;r ; x1U ;r½ � � x2L;r ; x2U ;r½ � �…� xnL;r ; xnU ;r½ � ð19Þ
with respective lower and upper bounds as:
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xjL;r ¼ Gr−1
best;j −

1
2
rangej Ω

rð Þj

xjL;U ¼ Gr−1
best;j þ

1
2
rangej Ω

rð Þj
ð20Þ

The swarm regrouping index, r, begins with 0 prior to
the incidence of any regrouping and grows by one with
each successive regrouping. Vector Gbestr−1 is the global
best at the last iteration of the previous grouping, and
x!ir−1 is the position of particle i at the last iteration of
the previous grouping. Note that before any regrouping
takes place, the original design search space, Ω0, corres-
pond to a swarm regrouping index of r = 0. The max-
imum velocity is recomputed with each regrouping:

vjmax;r ¼ λ:rangej Ω
rð Þj ð21Þ

Where, λ is the velocity clamping factor.
Fig. 4 Wind power forecast

Fig. 5 PV solar power forecast
4 Result
4.1 Test case
The 2500 kW wind, 480 kW PV, 500 kW diesel generator,
4 h*300 kW VRB, 4 h*200 kW Li-Ion battery industrial
microgrid in this study is designed to deliver power to an
industrial company. The minimum and maximum SOC of
the ESUs is 20 and 100%, respectively. An ideal 100% char-
ging/discharging efficiency is considered for all ESUs. The
diesel generator fuel cost function parameters are 0.00025
($/kWh) 2, 0.0156 $/kWh, 0.3312 $/h, and 23$, for a, b, c,
and SC, respectively. The day-ahead forecasts for the wind
and PV generation are shown in Figs. 4 and 5, respectively.

In China, Beijing, there is a three-step time-dependent
tariff for buying electricity from the main grid (State grid)
within a day. In 2016, this energy buying price for indus-
trial companies in business development area (BDA-Yiz-
huang in Beijing) is: 5.7323 USD cents per kilowatt-hour
(c$/kWh) during the period [11 pm – 7 am), 9.7385 c$/
kWh during the periods [7 am – 10 am), [3 pm – 6 pm)
and [9 pm – 11 pm), and 13.852 c$/kWh during the



Fig. 6 Grid price for industrial companies in BDA, Beijing, in 2016
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periods [10 am – 3 pm) and [6 pm – 9 pm). How-
ever, the price of selling power to the main grid is
fixed throughout the day as 5.9492 c$/kWh, shown in
Fig. 6.

The operation and maintenance costs considered
within the microgrid are, respectively 0.3767 c$/kWh,
0.2169 c$/kWh, 0.5767 c$/kWh, 0.003 c$/kWh and
0.0015 c$/kWh for the wind turbine system, PV systems,
diesel generator, VRB and Li-Ion battery.
4.2 Operation in isolated mode (case I)
The day-ahead load demand forecast for this case is shown
in Fig. 7. The peak load demand is less than the summation
of the peak generation capacity of each DG unit.
The RegPSO-based optimal energy scheduling of the

microgrid for the next day under isolated operation
mode, and the corresponding SOCs of the ESUs are
shown in Figs. 8 and 9, respectively.
As shown in the figures above, during the first 4 h

[12 am – 4 am) of the simulation period, there is a signifi-
cant generation of wind energy and no generation from
Fig. 7 Load demand forecast
the PV source. In this period, the renewable energy com-
pletely supplies the load demands and charges the ESUs
which were at minimum SOCs (20%) before the simula-
tion started, and the DE is off (zero power) to reduce the
fuel cost as there is enough renewable generation in the
microgrid. The ESUs continuously charge and their SOCs
increases until 4 am, shown in Fig. 9. However, although
they don't get fully charged the ESUs stop charging and
their charging powers come to zero (inactive state) at
4 am since the available renewable generation can only
supply the load demand since from this time till 1 pm.
During the period [1 pm – 9 pm), the power gener-

ation from both the wind and PV sources is not enough
to supply the load demands, and thus the ESUs start dis-
charging to send power to the microgrid together with
the wind, PV and DE.
The ESUs continuously discharge and reach their mini-

mum storage capacity (240 kWh for VRB and 160 kWh
for Li-Ion battery), shown in Fig. 9, at 9 pm and their dis-
charging power come zero then after. To reduce the cost
of energy production, the ESUs are inactive state since
then; until they will be charged again by an available



Fig. 8 Optimal dynamic scheduling using RegPSO in isolated mode

Fig. 9 SOCs of VRB and Li-Ion battery obtained using RegPSO in isolated mode
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excess renewable generations in the microgrid and their
SOCs are kept at minimum value of 20%. The wind and
DE supply the load demands from 9 pm to 12 am.
4.3 Operation in Non-isolated mode (case II & III)
In this case, the microgrid is in a grid-connected mode,
and participates in the energy trading exchange with the
main grid in addition to supplying the load demands
within it. Figure 10 shows the next day load demand
forecast for this scenario.
Figure 11 shows the RegPSO-based optimal energy

scheduling of the microgrid under grid-connected oper-
ation mode, and the corresponding SOCs of the ESUs
are also shown in Fig. 12.
During the period [12 am – 6 am), shown in Fig. 11,

the renewable energy completely supplies the load de-
mands within the industrial park and charges the
ESUs which were considered to be at their minimum
SOC (20%) before the simulation started at zero time
(12 am). Moreover in this period, the microgrid sells
the surplus generation to the main grid.
The ESUs continuously charge and reach their max-
imum storage capacity, shown in Fig. 12, at 6 am and
then their charging power become zero. During the
period [6 am – 1 pm), there is still an excess generation
in the microgrid, however the ESUs are already fully
charged, thus the microgrid keeps selling the excess en-
ergy to the main grid.
During cheap grid-price time period, the diesel fuel

cost is more expensive than the grid price when the
power is greater than 151 kW. In moderate grid-
price time slots, the diesel fuel cost is more expensive than
the grid price when the power is greater than 311 kW,
and at the peak grid-price period, the diesel fuel cost is
more expensive than the grid price when the power is
greater than 472 kW as shown in Fig. 13.
The power generation from the renewables is not

enough to supply the load demands and the grid price is
peak (expensive) during the period [1 pm – 3 pm).
Hence, the ESUs start discharging to support the micro-
grid load demands together with the wind and PV and
the DE and grid powers are zero in this period to
minimize the total cost as shown Fig. 11.



Fig. 10 Load demand forecast

Fig. 11 Optimal dynamic scheduling using RegPSO in non-isolated operation mode

Fig. 12 SOCs of VRB and Li-Ion battery obtained using RegPSO in non-isolated operation mode
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During the period [3 pm – 6 pm), the generation from
the renewables is insufficient to supply the microgrid
load demands and the grid price is moderate. Hence, the
ESUs stop discharging for later peak hour demand use
and the microgrid utilizes the generations from the DE
and main grid for economic reasons as shown Fig. 11.
In the period [6 pm – 9 pm), the microgrid load de-
mand is greater than the local generations from the re-
newables. Since the electricity buying price is expensive
in this period, the ESUs restart discharging to supply the
load together with the wind and DE. The ESUs continu-
ously discharge and reach their minimum storage



Fig. 13 Comparison of diesel fuel cost vs. time-varying grid-price
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capacity (240 kWh for VRB and 160 kWh for Li-Ion bat-
tery), shown in Fig. 12, at 9 pm and their discharging
power come zero then after. Thus, the ESUs are in in-
active state since then; until they will be charged again
by an available excess renewable generations in the
microgrid and their SOCs are kept at minimum value of
20% as shown in Fig. 12.
Fig. 15 Energy resources dynamic scheduling using GA in non-isolated op

Fig. 14 Energy resources dynamic scheduling using GA in isolated operati
The load demand is supplied by the wind and DE dur-
ing the period [9 pm – 11 pm) and the grid power is
zero for minimum cost. In the period [11 pm – 12 am),
there comes again excess renewable generation from the
wind source and the microgrid sells this energy to the
main grid instead of starting charging the ESU for max-
imum daily total profit.
eration mode

on mode
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Figures 14 and 15 show the GA-based optimal energy
scheduling simulation results for the isolated and grid-
connected operation modes, respectively.
The hourly values of energy production fuel costs by

both optimization methods for the isolated operation
mode is shown in Fig. 16. The hourly values of energy
production fuel costs and grid power purchasing
Fig. 18 Hourly comparison of energy selling revenue in non-isolated mode

Fig. 17 Hourly comparison of energy production fuel costs and grid powe

Fig. 16 Hourly comparison of energy production fuel costs in isolated mod
expenses obtained from both approaches for the grid-
connected operation mode is shown in Fig. 17. The
hourly values of energy selling revenues obtained from
both approaches for the grid-connected operation mode
is shown in Fig. 18.
As shown in Figs. 16 and 17, the microgrid hourly energy

production and purchasing expenses are zero during the
of operation

r purchasing expenses in non-isolated mode of operation

e of operation



Table 1 Fuel and energy trading costs by RegPSO and GA

Optim.
Algorithm

Daily Total Cost ($)

Daily Energy Production Fuel Cost Daily Grid Power Purchasing Expense Daily Energy Selling Profit

Isolated Mode Non-isolated Mode Isolated Mode Non-isolated Mode Isolated Mode Non-isolated Mode

RegPSO 354.42 247.04 0 38.654 0 211.66

GA 383.53 257 0 42.862 0 211.66

Table 2 Computation time for RegPSO and GA

Optimization
Algorithm

Total Computation Time (seconds)

Isolated Mode Non-isolated Mode

RegPSO 1.8678 2.1152

GA 14.9845 16.3456
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period [12 am – 3 pm) since the microgrid has sufficient
renewable generation within it. The best performance of
the RegPSO algorithm over the GA is clearly visible in most
of the operation hours. Using RegPSO-based approach, the
energy purchasing expense was very much lower than the
GA-based purchasing prices. This shows the effectiveness
of the proposed strategy for achieving a global optimum so-
lution as desired. Moreover, as it is shown in Table 1, the
RegPSO-based energy storage management strategy has
given a lower daily total expense of energy production and
purchasing than the GA-based approach.
As seen in Fig. 18, during the period [12 am – 1 pm),

the microgrid sells energy to the main grid and gets
profit. After 1 pm, except at [11 pm – 12 am), the
microgrid has no surplus generation to sell, and hence
the selling income is zero. Moreover, since the electricity
selling price to the main grid is fixed throughout the
day, the hourly selling income values obtained by both
algorithms (RegPSO and GA) are almost the same.
Table 2 gives the total computation time taken by both

energy management optimization approaches (using
Intel core i5-5200 CPU, 2.20 GHz processor and 4 GB
RAM PC) for both microgrid operation modes. The
RegPSO-based energy storage management has allocated
the schedule within a short period of time compared to
the GA-based method in both operation modes.
5 Conclusion
Optimal dynamic energy scheduling strategy for a
Wind-PV-DE-VRB-Li-Ion industrial microgrid under
both isolated and grid-tied operation modes was pro-
posed in this study using the RegPSO algorithm. The
proposed approach takes into account the fluctuations
of renewables and load demands in the microgrid and
appropriate day-ahead forecasts have been made to over-
come these fluctuations. Simulation results have demon-
strated the effectiveness and possible advantages of the
developed energy management strategy in minimizing
the energy production fuel cost, grid power purchasing
expense, maximizing the energy selling profit, maximiz-
ing the economic usage of ESUs and enhancing the
utilization of the renewables within the microgrid. Com-
parison of simulation results with GA-based approach,
demonstrated the effectiveness of the proposed RegPSO-
based energy management strategy in resulting a pos-
sible reduced energy production fuel cost and grid
power purchasing expense for the microgrid. Moreover,
the proposed approach is fast convergent and results
global optimum solutions in an acceptable short compu-
tation time. This also manifests the ability of the pro-
posed approach for real time energy management of
microgrids with any number of renewable DGs and
ESUs under both operation modes.
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