671 research outputs found

    Reference values of bone stiffness index and C-terminal telopeptide in healthy European children

    Get PDF
    BACKGROUND/OBJECTIVE: Quantitative ultrasound measurements and bone metabolic markers can help to monitor bone health and to detect impaired skeletal development. Population-based reference values for children may serve as a basis for preventive measures to reduce the risk of osteoporosis and osteoporotic fractures in later life. This is the first paper providing age-, sex-and height-specific reference values for bone stiffness index (SI) and serum carboxy-terminal cross-linking telopeptide of type I collagen (CTX) in healthy, apparently prepubertal children. SUBJECTS/METHODS: In the population-based IDEFICS baseline survey (2007-2008) and follow-up (2009-2010), 18 745 children from eight European countries were newly recruited. A total of 10 791 2-10.9-year-old and 1646 3-8.9-year-old healthy children provided data on SI of the right and left calcaneus and serum CTX, respectively. Furthermore, height and weight were measured. Percentile curves were calculated using the General Additive Model for Location Scale and Shape (GAMLSS) to model the distribution of SI and CTX depending on multiple covariates while accounting for dispersion, skewness, and the kurtosis of this distribution. RESULTS: SI was negatively associated with age and height in children aged 2-5 years, whereas a positive association was observed in children aged 6-10 years. The dip in SI occurred at older age for higher SI percentiles and was observed earlier in taller children than in smaller children. The CTX reference curves showed a linear-positive association with age and height. No major sex differences were observed for the SI and CTX reference values. CONCLUSION: These reference data lay the ground to evaluate bone growth and metabolism in prepubertal children in epidemiological and clinical settings. They may also inform clinical practice to monitor skeletal development and to assess adverse drug reactions during medical treatments

    Bone and body composition analyzed by Dual-energy X-ray Absorptiometry (DXA) in clinical and nutritional evaluation of young patients with Cystic Fibrosis: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>the improved general therapy has led to reduced morbidity and mortality from Cystic Fibrosis (CF), and bone status may have a potentially greater clinical impact.</p> <p>We investigated the correlation between the severity of the clinical condition, bone status and body composition parameters, in a group of children and young adults with CF.</p> <p>Methods</p> <p>we measured lumbar spine bone density and total body composition by dual energy x-ray absorptiometry (DXA) in 82 consecutive CF patients (42 males; median age: 13 years - range: 5-30). Eighty-two healthy subjects, matched for age, gender, height and pubertal stage were recruited as a control group.</p> <p>Results</p> <p>37 patients (45.1%) had a normal bone mineral density (BMD). A BMD reduction were observed in 45 (54.8%) patients. Lumbar spine Z score was positively related to Body Mass Index (BMI) and a higher Shwachman-Kulczycki score, and negatively related to Crispin-Norman score. A positive and significant correlation was also observed between lumbar spine Z score and total body composition.</p> <p>Conclusion</p> <p>a significant BMD reduction can be present early in CF children and adolescents. A careful follow up of bone status is required starting in childhood.</p

    Pediatric DXA: clinical applications

    Get PDF
    Normal bone mineral accrual requires adequate dietary intake of calcium, vitamin D and other nutrients; hepatic and renal activation of vitamin D; normal hormone levels (thyroid, parathyroid, reproductive and growth hormones); and neuromuscular functioning with sufficient stress upon the skeleton to induce bone deposition. The presence of genetic or acquired diseases and the therapies that are used to treat them can also impact bone health. Since the introduction of clinical DXA in pediatrics in the early 1990s, there has been considerable investigation into the causes of low bone mineral density (BMD) in children. Pediatricians have also become aware of the role adequate bone mass accrual in childhood has in preventing osteoporotic fractures in late adulthood. Additionally, the availability of medications to improve BMD has increased with the development of bisphosphonates. These factors have led to the increased utilization of DXA in pediatrics. This review summarizes much of the previous research regarding BMD in children and is meant to assist radiologists and clinicians with DXA utilization and interpretation

    Genetic diagnosis of X-linked dominant hypophosphatemic rickets in a cohort study: Tubular reabsorption of phosphate and 1,25(OH)2D serum levels are associated with PHEX mutation type

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic Hypophosphatemic Rickets (HR) is a group of diseases characterized by renal phosphate wasting with inappropriately low or normal 1,25-dihydroxyvitamin D<sub>3 </sub>(1,25(OH)<sub>2</sub>D) serum levels. The most common form of HR is X-linked dominant HR (XLHR) which is caused by inactivating mutations in the <it>PHEX </it>gene. The purpose of this study was to perform genetic diagnosis in a cohort of patients with clinical diagnosis of HR, to perform genotype-phenotype correlations of those patients and to compare our data with other HR cohort studies.</p> <p>Methods</p> <p>Forty three affected individuals from 36 non related families were analyzed. For the genetic analysis, the <it>PHEX </it>gene was sequenced in all of the patients and in 13 cases the study was complemented by mRNA sequencing and Multiple Ligation Probe Assay. For the genotype-phenotype correlation study, the clinical and biochemical phenotype of the patients was compared with the type of mutation, which was grouped into clearly deleterious or likely causative, using the Mann-Whitney and Fisher's exact test.</p> <p>Results</p> <p>Mutations in the <it>PHEX </it>gene were identified in all the patients thus confirming an XLHR. Thirty four different mutations were found distributed throughout the gene with higher density at the 3' end. The majority of the mutations were novel (69.4%), most of them resulted in a truncated PHEX protein (83.3%) and were family specific (88.9%). Tubular reabsorption of phosphate (TRP) and 1,25(OH)<sub>2</sub>D serum levels were significantly lower in patients carrying clearly deleterious mutations than in patients carrying likely causative ones (61.39 ± 19.76 vs. 80.14 ± 8.80%, p = 0.028 and 40.93 ± 30.73 vs. 78.46 ± 36.27 pg/ml, p = 0.013).</p> <p>Conclusions</p> <p><it>PHEX </it>gene mutations were found in all the HR cases analyzed, which was in contrast with other cohort studies. Patients with clearly deleterious <it>PHEX </it>mutations had lower TRP and 1,25(OH)<sub>2</sub>D levels suggesting that the <it>PHEX </it>type of mutation might predict the XLHR phenotype severity.</p
    • …
    corecore