680 research outputs found
Characterization of a glycosphingolipid antigen defined by the monoclonal antibody MBr1 expressed in normal and neoplastic epithelial cells of human mammary gland
The antigen defined by a monoclonal antibody, MBr1, was found to be expressed in normal human mammary gland epithelia and human mammary carcinoma cells (Menard, S., Tagliabue, E., Canevari, S., Fossati, G., and Colnaghi, M. I. (1983) Cancer Res. 43, 1295-1300). The antigen has been isolated from breast cancer cell line MCF-7, which was used as immunogen, and its structure was determined by methylation analysis, NMR spectroscopy, direct probe mass spectrometry, and enzymatic degradation as identified below. Fuc alpha 1----2Gal beta 1----3GalNAc beta 1----3Gal alpha 1----4Gal beta 1----4Glc beta 1----1Cer The antibody cross-reacted weakly with fucosylasialo-GM1 (IV2FucGg4), which shares the same terminal sequence, Fuc alpha 1----2Gal beta 1----3GalNAc, with this antigen. However, various other structures, including lacto-series H structure (Fuc alpha 1----2 Gal beta 1----4/or 3GlcNAc beta 1----3Gal), did not show any reactivity with this antibody. Therefore, this antigen represents a blood group H antigen with a globo-series structure which is abundant in human teratocarcinoma (Kannagi, R., Levery, S. B., Ishigami, F., Hakomori, S., Shevinsky, L. H., Knowles, B. B., and Solter, D. (1983) J. Biol. Chem. 258, 8934-8942), although its presence must be limited in normal adult human tissue
Myriocin Effect on Tvrm4 Retina, an Autosomal Dominant Pattern of Retinitis Pigmentosa
Tvrm4 mice, a model of autosomal dominant retinitis pigmentosa (RP), carry a mutation of Rhodopsin gene that can be activated by brief exposure to very intense light. Here, we test the possibility of an anatomical, metabolic, and functional recovery by delivering to degenerating Tvrm4 animals, Myriocin, an inhibitor of ceramide de novo synthesis previously shown to effectively slow down retinal degeneration in rd10 mutants (Strettoi et al., 2010; Piano et al., 2013). Different routes and durations of Myriocin administration were attempted by using either single intravitreal (i.v.) or long-term, repeated intraperitoneal (i.p.) injections. The retinal function of treated and control animals was tested by ERG recordings. Retinas from ERG-recorded animals were studied histologically to reveal the extent of photoreceptor death. A correlation was observed between Myriocin administration, lowering of retinal ceramides, and preservation of ERG responses in i.v. injected cases. Noticeably, the i.p. treatment with Myriocin decreased the extension of the retinal-degenerating area, preserved the ERG response, and correlated with decreased levels of biochemical indicators of retinal oxidative damage. The results obtained in this study confirm the efficacy of Myriocin in slowing down retinal degeneration in genetic models of RP independently of the underlying mutation responsible for the disease, likely targeting ceramide-dependent, downstream pathways. Alleviation of retinal oxidative stress upon Myriocin treatment suggests that this molecule, or yet unidentified metabolites, act on cellular detoxification systems supporting cell survival. Altogether, the pharmacological approach chosen here meets the necessary pre-requisites for translation into human therapy to slow down RP
Cystic Fibrosis Defective Response to Infection Involves Autophagy and Lipid Metabolism
Cystic fibrosis (CF) is a hereditary disease, with 70% of patients developing a proteinopathy related to the deletion of phenylalanine 508. CF is associated with multiple organ dysfunction, chronic inflammation, and recurrent lung infections. CF is characterized by defective autophagy, lipid metabolism, and immune response. Intracellular lipid accumulation favors microbial infection, and autophagy deficiency impairs internalized pathogen clearance. Myriocin, an inhibitor of sphingolipid synthesis, significantly reduces inflammation, promotes microbial clearance in the lungs, and induces autophagy and lipid oxidation. RNA-seq was performed in Aspergillusfumigatus-infected and myriocin-treated CF patients' derived monocytes and in a CF bronchial epithelial cell line. Fungal clearance was also evaluated in CF monocytes. Myriocin enhanced CF patients' monocytes killing of A. fumigatus. CF patients' monocytes and cell line responded to infection with a profound transcriptional change; myriocin regulates genes that are involved in inflammation, autophagy, lipid storage, and metabolism, including histones and heat shock proteins whose activity is related to the response to infection. We conclude that the regulation of sphingolipid synthesis induces a metabolism drift by promoting autophagy and lipid consumption. This process is driven by a transcriptional program that corrects part of the differences between CF and control samples, therefore ameliorating the infection response and pathogen clearance in the CF cell line and in CF peripheral blood monocytes
Arrhythmias presenting in neonatal lupus
Perfusion of human foetal heart with anti-Ro/SSA antibodies induces transient heart block. Anti-Ro/SSA antibodies may cross-react with T- and L-type calcium channels, and anti-p200 antibodies may cause calcium to accumulate in rat heart cells. These actions may explain a direct electrophysiological effect of these antibodies. Congenital complete heart block is the more severe manifestation of so-called "Neonatal Lupus". In clinical practice, it is important to distinguish in utero complete versus incomplete atrioventricular (AV) block, as complete AV block to date is irreversible, while incomplete AV block has been shown to be potentially reversible after fluorinated steroid therapy. Another issue is the definition of congenital AV block, as cardiologists have considered congenital blocks detected months or years after birth. We propose as congenital blocks detected in utero or within the neonatal period (0-27 days after birth). The possible detection of first degree AV block in utero, with different techniques, might be a promising tool to assess the effects of these antibodies. Other arrhythmias have been described in NL or have been linked to anti-Ro/SSA antibodies: first degree AV block, in utero and after birth, second degree (i.e. incomplete block), sinus bradycardia and QT prolongation, both in infants and in adults, ventricular arrhythmias (in adults). Overall, these arrhythmias have not a clinical relevance, but are important for research purposes
CELL-LINED, NONWOVEN MICROFIBER SCAFFOLDS AS A BLOOD INTERFACE *
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73137/1/j.1749-6632.1977.tb41787.x.pd
The geometrical nature of optical resonances : from a sphere to fused dimer nanoparticles
We study the electromagnetic response of smooth gold nanoparticles with shapes varying from a single sphere to two ellipsoids joined smoothly at their vertices. We show that the plasmonic resonance visible in the extinction and absorption cross sections shifts to longer wavelengths and eventually disappears as the mid-plane waist of the composite particle becomes narrower. This process corresponds to an increase of the numbers of internal and scattering modes that are mainly confined to the surface and coupled to the incident field. These modes strongly affect the near field, and therefore are of great importance in surface spectroscopy, but are almost undetectable in the far field
A Genome-Wide Screening and SNPs-to-Genes Approach to Identify Novel Genetic Risk Factors Associated with Frontotemporal Dementia
Frontotemporal dementia (FTD) is the second most prevalent form of early onset dementia after Alzheimerās disease (AD). We performed a case-control association study in an Italian FTD cohort (n = 530) followed by the novel SNPs-to-genes approach and functional annotation analysis. We identified two novel potential loci for FTD. Suggestive SNPs reached p-values ~10-7 and OR > 2.5 (2p16.3) and 1.5 (17q25.3). Suggestive alleles at 17q25.3 identified a disease-associated haplotype causing decreased expression of -cis genes such as RFNG and AATK involved in neuronal genesis and differentiation, and axon outgrowth, respectively. We replicated this locus through the SNPs-to-genes approach. Our functional annotation analysis indicated significant enrichment for functions of the brain (neuronal genesis, differentiation and maturation), the synapse (neurotransmission and synapse plasticity), and elements of the immune system, the latter supporting our recent international FTD-GWAS. This is the largest genome-wide study in Italian FTD to date. Although our results are not conclusive, we set the basis for future replication studies and identification of susceptible molecular mechanisms involved in FTD pathogenesis
Risk and protective factors associated with mental health status in an Italian sample of students during the fourth wave of COVID-19 pandemic
BackgroundIt is well known that the COVID-19 pandemic has caused a global health crisis, especially for young people. However, most studies were conducted during the first waves of the pandemic. Few Italian studies specifically attempted to broadly assess young people's mental health status during the fourth wave of the pandemic.MethodsThis study aimed at evaluating the mental health status among a group of Italian adolescents and young adults during the fourth wave of the COVID-19 pandemic. 11,839 high school students and 15,000 university students (age range 14-25) were asked to complete a multidimensional online survey, of which 7,146 (26,6%) agreed to participate. The survey also included standardized measures for depression, anxiety, anger, somatic symptoms, resilience, loneliness and post-traumatic growth. Two separate clusters were identified through cluster analysis. Random forest, classification tree and logistic regressions analyses were applied to identify factors associated to a good or a poor level of mental health and, thus, to define students' mental health profiles.ResultsOverall, the students in our sample showed high levels of psychopathology. The clustering methods performed identified two separate clusters reflecting groups of students with different psychological features, that we further defined as "poor mental health" and "good mental health". The random forest and the logistic regressions found that the most discriminating variables among those two groups were: UCLA Loneliness Scale score, self-harm behaviors, Connor-Davidson Resilience Scale-10 score, satisfaction with family relationships, Fear of COVID-19 Scale score, gender and binge eating behaviors. The classification tree analysis identified students' profiles, showing that, globally, poor mental health was defined by higher scores of loneliness and self-harm, followed by being of female gender, presenting binge eating behaviors and, finally, having unsatisfying family relationships.ConclusionsThe results of this study confirmed the major psychological distress caused by the COVID-19 pandemic in a large sample of Italian students, and provided further insights regarding those factors associated with a good or poor mental health status. Our findings suggest the importance of implementing programs targeting aspects that have been found to be associated to a good mental health
Inflammatory role of extracellular sphingolipids in Cystic Fibrosis
Ceramide is emerging as one of the players of inflammation in lung diseases. However, data on its inflammatory role in Cystic Fibrosis (CF) as part of the extracellular machinery driven by lung mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) are missing. We obtained an in vitro model of CF-MSC by treating control human lung MSCs with a specific CFTR inhibitor. We characterized EVs populations derived from MSCs (ctr EVs) and CF-MSCs (CF-EVs) and analyzed their sphingolipid profile by LC-MS/MS. To evaluate their immunomodulatory function, we treated an in vitro human model of CF, with both EVs populations. Our data show that the two EVs populations differ for the average size, amount, and rate of uptake. CF-EVs display higher ceramide and dihydroceramide accumulation as compared to control EVs, suggesting the involvement of the de novo biosynthesis pathway in the parental CF-MSCs. Higher sphingomyelinase activity in CF-MSCs, driven by inflammation-induced ceramide accumulation, sustains the exocytosis of vesicles that export new formed pro-inflammatory ceramide. Our results suggest that CFTR dysfunction associates with an enhanced sphingolipid metabolism leading to the release of EVs that export the excess of pro-inflammatory Cer to the recipient cells, thus contributing to maintain the unresolved inflammatory status of CF
Long and very-long-chain ceramides correlate with a more aggressive behavior in skull base chordoma patients
Background: Skull base chordomas are rare tumors arising from notochord. Sphingolipids analysis is a promising approach in molecular oncology, and it has never been applied in chordomas. Our aim is to investigate chordoma behavior and the role of ceramides. Methods: Ceramides were extracted and evaluated by liquid chromatography and mass spectrometry in a cohort of patients with a skull base chordoma. Clinical data were also collected and correlated with ceramide levels. Linear regression and correlation analyses were conducted. Results: Analyzing the association between ceramides level and MIB-1, total ceramides and dihydroceramides showed a strong association (r = 0.7257 and r = 0.6733, respectively) with MIB-1 staining (p = 0.0033 and p = 0.0083, respectively). Among the single ceramide species, Cer C24:1 (r = 0.8814, p <= 0.0001), DHCer C24:1 (r = 0.8429, p = 0.0002) and DHCer C18:0 (r = 0.9426, p <= 0.0001) showed a significant correlation with MIB-1. Conclusion: Our lipid analysis showed ceramides to be promising tumoral biomarkers in skull base chordomas. Long- and very-long-chain ceramides, such as Cer C24:1 and DHCer C24:1, may be related to a prolonged tumor survival and aggressiveness, and the understanding of their effective biological role will hopefully shed light on the mechanisms of chordoma radio-resistance, tendency to recur, and use of agents targeting ceramide metabolism
- ā¦