21 research outputs found

    Primary Production, an Index of Climate Change in the Ocean: Satellite-Based Estimates over Two Decades

    Get PDF
    Primary production by marine phytoplankton is one of the largest fluxes of carbon on our planet. In the past few decades, considerable progress has been made in estimating global primary production at high spatial and temporal scales by combining in situ measurements of primary production with remote-sensing observations of phytoplankton biomass. One of the major challengesinthisapproachliesintheassignmentoftheappropriatemodelparametersthatdefinethe photosynthetic response of phytoplankton to the light field. In the present study, a global database of in situ measurements of photosynthesis versus irradiance (P-I) parameters and a 20-year record of climatequalitysatelliteobservationswereusedtoassessglobalprimaryproductionanditsvariability with seasons and locations as well as between years. In addition, the sensitivity of the computed primaryproductiontopotentialchangesinthephotosyntheticresponseofphytoplanktoncellsunder changing environmental conditions was investigated. Global annual primary production varied from 38.8 to 42.1 Gt C yr−1 over the period of 1998–2018. Inter-annual changes in global primary production did not follow a linear trend, and regional differences in the magnitude and direction of change in primary production were observed. Trends in primary production followed directly from changes in chlorophyll-a and were related to changes in the physico-chemical conditions of the water column due to inter-annual and multidecadal climate oscillations. Moreover, the sensitivity analysis in which P-I parameters were adjusted by±1 standard deviation showed the importance of accurately assigning photosynthetic parameters in global and regional calculations of primary production. TheassimilationnumberoftheP-Icurveshowedstrongrelationshipswithenvironmental variables such as temperature and had a practically one-to-one relationship with the magnitude of change in primary production. In the future, such empirical relationships could potentially be used for a more dynamic assignment of photosynthetic rates in the estimation of global primary production. RelationshipsbetweentheinitialslopeoftheP-Icurveandenvironmentalvariableswere more elusive

    Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow

    Get PDF
    Large volcanic eruptions on Earth commonly occur with a collapse of the roof of a crustal magma reservoir, forming a caldera. Only a few such collapses occur per century, and the lack of detailed observations has obscured insight into the mechanical interplay between collapse and eruption.We usemultiparameter geophysical and geochemical data to show that the 110-squarekilometer and 65-meter-deep collapse of Bárdarbunga caldera in 2014-2015 was initiated through withdrawal of magma, and lateral migration through a 48-kilometers-long dike, from a 12-kilometers deep reservoir. Interaction between the pressure exerted by the subsiding reservoir roof and the physical properties of the subsurface flow path explain the gradual, nearexponential decline of both collapse rate and the intensity of the 180-day-long eruption

    Primary production, an index of climate change in the ocean: Satellite-based estimates over two decades

    Full text link
    © 2020 by the authors. Primary production by marine phytoplankton is one of the largest fluxes of carbon on our planet. In the past few decades, considerable progress has been made in estimating global primary production at high spatial and temporal scales by combining in situ measurements of primary production with remote-sensing observations of phytoplankton biomass. One of the major challenges in this approach lies in the assignment of the appropriate model parameters that define the photosynthetic response of phytoplankton to the light field. In the present study, a global database of in situ measurements of photosynthesis versus irradiance (P-I) parameters and a 20-year record of climate quality satellite observations were used to assess global primary production and its variability with seasons and locations as well as between years. In addition, the sensitivity of the computed primary production to potential changes in the photosynthetic response of phytoplankton cells under changing environmental conditions was investigated. Global annual primary production varied from 38.8 to 42.1 Gt C yr-1 over the period of 1998-2018. Inter-annual changes in global primary production did not follow a linear trend, and regional differences in the magnitude and direction of change in primary production were observed. Trends in primary production followed directly from changes in chlorophyll-a and were related to changes in the physico-chemical conditions of the water column due to inter-annual and multidecadal climate oscillations. Moreover, the sensitivity analysis in which P-I parameters were adjusted by ±1 standard deviation showed the importance of accurately assigning photosynthetic parameters in global and regional calculations of primary production. The assimilation number of the P-I curve showed strong relationships with environmental variables such as temperature and had a practically one-to-one relationship with the magnitude of change in primary production. In the future, such empirical relationships could potentially be used for a more dynamic assignment of photosynthetic rates in the estimation of global primary production. Relationships between the initial slope of the P-I curve and environmental variables were more elusive

    Experimentally dictated stability of carbonated oceanic crust to moderately great depths in the Earth: Results from the solidus determination in the system CaO-MgO-Al2O3-SiO2-CO2

    No full text
    Solidus melting phase relations are reported for carbonated eclogite in the system CaO-MgO-Al2O3-SiO2-CO2 at 12 to 25 GPa. From 12 to 16 GPa, melts are in equilibrium with clinopyroxene, stishovite, garnet, aragonite, and magnesite. At 20 and 25 GPa, melts are in equilibrium with garnet, stishovite, calcium-alumino silicate, calcium perovskite, and magnesite. Melting reactions demonstrate that from 12 to 16 GPa, stishovite is in reaction with the melt. At 20 and 25 GPa, garnet and stishovite together are produced upon melting of model, carbonated eclogite. At 20 and 25 GPa, calcium perovskite is also the phase that contributes the most toward liquid production. Melt compositions at all pressures are carbonatitic, with roughly 37-40 wt% dissolved CO2. From 12 to 16 GPa, the liquids are calciocarbonatites with Ca#molar of ̃69-71; liquid compositions become less calcic with Ca# of ̃52-55 at 20 and 25 GPa. Given these melting phase relations, suitable subduction zone adiabats do not intersect the solidus of model carbonated eclogite at depths investigated in the present study. Hence, on this basis, it is fair to say that carbonated eclogite possibly avoids melting in subduction zone settings, thereby delivering carbonate to at least moderate depths in the Earth. However, owing to local heating events, small-degree melting of carbonated eclogite is not completely precluded, and the liquids liberated from this melting can be viewed as agents of chemical mass transfer in the deep Earth. At present, however, geochemical consequences of subduction-related melting of carbonated eclogite are difficult to evaluate. Copyright 2010 by the American Geophysical Union

    The effect of trace elements on the olivine-wadsleyite transformation

    No full text
    Multianvil experiments were conducted at 1400 to 1600 °C on olivine and peridotite starting compositions to determine the partitioning of Ti, Al, Cr, Ni, Ca, and Na between coexisting olivine and wadsleyite. All of these elements occur as minor amounts in mantle olivine. Our experiments indicate that all, except Ca, partition preferentially into wadsleyite relative to olivine. The order of preference for wadsleyite is N

    Photosynthesis-irradiance parameters of marine phytoplankton: Synthesis of a global data set

    No full text
    The photosynthetic performance of marine phytoplankton varies in response to a variety of factors, environmental and taxonomic. One of the aims of the MArine primary Production: model Parameters from Space (MAPPS) project of the European Space Agency is to assemble a global database of photosynthesis–irradiance (P-E) parameters from a range of oceanographic regimes as an aid to examining the basin-scale variability in the photophysiological response of marine phytoplankton and to use this information to improve the assignment of P-E parameters in the estimation of global marine primary production using satellite data. The MAPPS P-E database, which consists of over 5000 P-E experiments, provides information on the spatio-temporal variability in the two P-E parameters (the assimilation number, PmB, and the initial slope, αB, where the superscripts B indicate normalisation to concentration of chlorophyll) that are fundamental inputs for models (satellite-based and otherwise) of marine primary production that use chlorophyll as the state variable. Quality-control measures consisted of removing samples with abnormally high parameter values and flags were added to denote whether the spectral quality of the incubator lamp was used to calculate a broad-band value of αB. The MAPPS database provides a photophysiological data set that is unprecedented in number of observations and in spatial coverage. The database will be useful to a variety of research communities, including marine ecologists, biogeochemical modellers, remote-sensing scientists and algal physiologists. The compiled data are available at https://doi.org/10.1594/PANGAEA.874087 (Bouman et al., 2017).</p

    Correction: Kulk et al. Primary production, an index of climate change in the ocean: Satellite-based estimates over two decades (Remote Sens., (2020), 12, (826), 10.3390/rs12050826)

    Get PDF
    This is the final version. Available from MDPI via the DOI in this record. Since the article “Primary Production, an Index of Climate Change in the Ocean: Satellite-Based Estimates over Two Decades” by Kulk et al. [1] was published, we discovered an error in the code of the primary production model, which crept in when the code was updated from the original version described by Platt and Sathyendranath (1988), Sathyendranath et al. (1995) and Longhurst et al. (1995) ([2,31,52] in [1]). The main error in the code led to a time interval for the integration of daily water-column primary production that was shorter than it should have been. As a consequence, daily surface irradiance and hence primary production were systematically underestimated by 20–25% for the entire time series. We also discovered that the Photosynthetic Active Radiation (PAR) products of the National Aeronautics and Space Administration (NASA) that were used to scale the daily light cycle were rounded down for 2003–2019 (MODIS years), which led to an additional but small underestimation of daily surface irradiance. In addition to addressing these errors, we have included a merged time series of the PAR product to remove inter-sensor biases (as described in the corrected text of Appendix B; see below). The main corrections increased our estimate of global annual primary production on average by +23.9% between 1998 and 2018, while the correction of the rounding error in the PAR products increased global annual primary production between 2003 and 2018 by +0.9%. Inclusion of the merged PAR product in the primary production model caused a −0.25% decrease in global annual primary production between 1998 and 2002 and a +0.08% increase between 2003 and 2010 (relative to the aforementioned +23.9% increase for the entire time series). Our estimate of global annual primary production between 1998 and 2018 now is 48.7 to 52.5 Gt C y−1 instead of the published estimate of 38.8 to 42.1 Gt C y−1 . Although this is a substantial increase in the estimate of primary production, the results of the sensitivity analysis in which the photosynthesis versus irradiance parameters were varied by ±1 standard deviation and, importantly, the observed trends in regional and global annual primary production are largely unchanged. We therefore consider the outcomes of the study still valid after the corrections. We also note that our corrected estimate of global annual primary production is still within the range of earlier reports (32.0–70.7 Gt C y−1 [5,104] in [1])
    corecore