46 research outputs found

    Soil composition and plant genotype determine benzoxazinoid-mediated plant–soil feedbacks in cereals

    Get PDF
    Plant–soil feedbacks refer to effects on plants that are mediated by soil modifications caused by the previous plant generation. Maize conditions the surrounding soil by secretion of root exudates including benzoxazinoids (BXs), a class of bioactive secondary metabolites. Previous work found that a BX-conditioned soil microbiota enhances insect resistance while reducing biomass in the next generation of maize plants. Whether these BX-mediated and microbially driven feedbacks are conserved across different soils and response species is unknown. We found the BX-feedbacks on maize growth and insect resistance conserved between two arable soils, but absent in a more fertile grassland soil, suggesting a soil-type dependence of BX feedbacks. We demonstrated that wheat also responded to BX-feedbacks. While the negative growth response to BX-conditioning was conserved in both cereals, insect resistance showed opposite patterns, with an increase in maize and a decrease in wheat. Wheat pathogen resistance was not affected. Finally and consistent with maize, we found the BX-feedbacks to be cultivar-specific. Taken together, BX-feedbacks affected cereal growth and resistance in a soil and genotype-dependent manner. Cultivar-specificity of BX-feedbacks is a key finding, as it hides the potential to optimize crops that avoid negative plant–soil feedbacks in rotations

    Genetic basis of microbiome recruitment in pea roots challenged by root rot disease

    Get PDF
    Legumes play a crucial role in the shift towards more sustainable protein production, but root rot complexes can cause massive yield losses in many legume crops such as pea. The pea root rot complex (PRRC) is caused by various soil borne pathogens that likely act synergistically and influence the composition of the rhizosphere microbiome (Wille et al., 2021). As there is genotypic variation in the abundance of key PRRC taxa and disease susceptibility, we aimed to investigate the genotype effect on the root microbiome composition affecting plant health. This crucial interaction between the plant genotype and its associated microbiome, also known as the holobiont, has the potential to lead to increased resistance to PRRC

    ILC2-modulated T cell-to-MDSC balance is associated with bladder cancer recurrence.

    Get PDF
    Non-muscle-invasive bladder cancer (NMIBC) is a highly recurrent tumor despite intravesical immunotherapy instillation with the bacillus Calmette-Guérin (BCG) vaccine. In a prospective longitudinal study, we took advantage of BCG instillations, which increase local immune infiltration, to characterize immune cell populations in the urine of patients with NMIBC as a surrogate for the bladder tumor microenvironment. We observed an infiltration of neutrophils, T cells, monocytic myeloid-derived suppressor cells (M-MDSCs), and group 2 innate lymphoid cells (ILC2). Notably, patients with a T cell-to-MDSC ratio of less than 1 showed dramatically lower recurrence-free survival than did patients with a ratio of greater than 1. Analysis of early and later time points indicated that this patient dichotomy existed prior to BCG treatment. ILC2 frequency was associated with detectable IL-13 in the urine and correlated with the level of recruited M-MDSCs, which highly expressed IL-13 receptor α1. In vitro, ILC2 were increased and potently expressed IL-13 in the presence of BCG or tumor cells. IL-13 induced the preferential recruitment and suppressive function of monocytes. Thus, the T cell-to-MDSC balance, associated with a skewing toward type 2 immunity, may predict bladder tumor recurrence and influence the mortality of patients with muscle-invasive cancer. Moreover, these results underline the ILC2/IL-13 axis as a targetable pathway to curtail the M-MDSC compartment and improve bladder cancer treatment

    The SIB Swiss Institute of Bioinformatics' resources: focus on curated databases

    Get PDF
    The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) provides world-class bioinformatics databases, software tools, services and training to the international life science community in academia and industry. These solutions allow life scientists to turn the exponentially growing amount of data into knowledge. Here, we provide an overview of SIB's resources and competence areas, with a strong focus on curated databases and SIB's most popular and widely used resources. In particular, SIB's Bioinformatics resource portal ExPASy features over 150 resources, including UniProtKB/Swiss-Prot, ENZYME, PROSITE, neXtProt, STRING, UniCarbKB, SugarBindDB, SwissRegulon, EPD, arrayMap, Bgee, SWISS-MODEL Repository, OMA, OrthoDB and other databases, which are briefly described in this article

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore