296 research outputs found
An overview of new supersymmetric gauge theories with 2-form gauge potentials
An overview of new 4d supersymmetric gauge theories with 2-form gauge
potentials constructed by various authors during the past five years is given.
The key role of three particular types of interaction vertices is emphasized.
These vertices are used to develop a connecting perspective on the new models
and to distinguish between them. One example is presented in detail to
illustrate characteristic features of the models. A new result on couplings of
2-form gauge potentials to Chern-Simons forms is presented.Comment: 11 pages; to appear in the proceedings of NATO ARW "Noncommutative
structures in mathematics and physics" (Kiev 09/00); table in section 3
correcte
Rigid Supersymmetric Theories in Curved Superspace
We present a uniform treatment of rigid supersymmetric field theories in a
curved spacetime , focusing on four-dimensional theories with four
supercharges. Our discussion is significantly simpler than earlier treatments,
because we use classical background values of the auxiliary fields in the
supergravity multiplet. We demonstrate our procedure using several examples.
For we reproduce the known results in the literature. A
supersymmetric Lagrangian for exists, but unless the
field theory is conformal, it is not reflection positive. We derive the
Lagrangian for and note that the
time direction can be rotated to Euclidean signature and be
compactified to only when the theory has a continuous R-symmetry. The
partition function on is independent of
the parameters of the flat space theory and depends holomorphically on some
complex background gauge fields. We also consider R-invariant
theories on and clarify a few points about them.Comment: 26 pages, uses harvmac; v2 with added reference
Correlations and Equilibration in Relativistic Quantum Systems
In this article we study the time evolution of an interacting field
theoretical system, i.e. \phi^4-field theory in 2+1 space-time dimensions, on
the basis of the Kadanoff-Baym equations for a spatially homogeneous system
including the self-consistent tadpole and sunset self-energies. We find that
equilibration is achieved only by inclusion of the sunset self-energy.
Simultaneously, the time evolution of the scalar particle spectral function is
studied for various initial states. We also compare associated solutions of the
corresponding Boltzmann equation to the full Kadanoff-Baym theory. This
comparison shows that a consistent inclusion of the spectral function has a
significant impact on the equilibration rates only if the width of the spectral
function becomes larger than 1/3 of the particle mass. Furthermore, based on
these findings, the conventional transport of particles in the on-shell
quasiparticle limit is extended to particles of finite life time by means of a
dynamical spectral function A(X,\vec{p},M^2). The off-shell propagation is
implemented in the Hadron-String-Dynamics (HSD) transport code and applied to
the dynamics of nucleus-nucleus collisions.Comment: 20 pages, 7 figures to appear in "Nonequilibrium at short time scales
- Formation of correlations", edited by K. Morawetz, Springer, Berlin (2003),
p16
The Two Faces of Anomaly Mediation
Anomaly mediation is a ubiquitous source of supersymmetry (SUSY) breaking
which appears in almost every theory of supergravity. In this paper, we show
that anomaly mediation really consists of two physically distinct phenomena,
which we dub "gravitino mediation" and "Kahler mediation". Gravitino mediation
arises from minimally uplifting SUSY anti-de Sitter (AdS) space to Minkowski
space, generating soft masses proportional to the gravitino mass. Kahler
mediation arises when visible sector fields have linear couplings to SUSY
breaking in the Kahler potential, generating soft masses proportional to beta
function coefficients. In the literature, these two phenomena are lumped
together under the name "anomaly mediation", but here we demonstrate that they
can be physically disentangled by measuring associated couplings to the
goldstino. In particular, we use the example of gaugino soft masses to show
that gravitino mediation generates soft masses without corresponding goldstino
couplings. This result naively violates the goldstino equivalence theorem but
is in fact necessary for supercurrent conservation in AdS space. Since
gravitino mediation persists even when the visible sector is sequestered from
SUSY breaking, we can use the absence of goldstino couplings as an unambiguous
definition of sequestering.Comment: 21 pages, 1 table; v2, references added, extended discussion in
introduction and appendix; v3, JHEP versio
On the renormalization of multiparton webs
We consider the recently developed diagrammatic approach to soft-gluon
exponentiation in multiparton scattering amplitudes, where the exponent is
written as a sum of webs - closed sets of diagrams whose colour and kinematic
parts are entangled via mixing matrices. A complementary approach to
exponentiation is based on the multiplicative renormalizability of intersecting
Wilson lines, and their subsequent finite anomalous dimension. Relating this
framework to that of webs, we derive renormalization constraints expressing all
multiple poles of any given web in terms of lower-order webs. We examine these
constraints explicitly up to four loops, and find that they are realised
through the action of the web mixing matrices in conjunction with the fact that
multiple pole terms in each diagram reduce to sums of products of lower-loop
integrals. Relevant singularities of multi-eikonal amplitudes up to three loops
are calculated in dimensional regularization using an exponential infrared
regulator. Finally, we formulate a new conjecture for web mixing matrices,
involving a weighted sum over column entries. Our results form an important
step in understanding non-Abelian exponentiation in multiparton amplitudes, and
pave the way for higher-loop computations of the soft anomalous dimension.Comment: 60 pages, 15 figure
Dualities for Loop Amplitudes of N=6 Chern-Simons Matter Theory
In this paper we study the one- and two-loop corrections to the four-point
amplitude of N=6 Chern-Simons matter theory. Using generalized unitarity
methods we express the one- and two-loop amplitudes in terms of dual-conformal
integrals. Explicit integration by using dimensional reduction gives vanishing
one-loop result as expected, while the two-loop result is non-vanishing and
matches with the Wilson loop computation. Furthermore, the two-loop correction
takes the same form as the one-loop correction to the four-point amplitude of
N=4 super Yang-Mills. We discuss possible higher loop extensions of this
correspondence between the two theories. As a side result, we extend the method
of dimensional reduction for three dimensions to five dimensions where dual
conformal symmetry is most manifest, demonstrating significant simplification
to the computation of integrals.Comment: 32 pages and 6 figures. v2: minus sign corrections, ref updated v3:
Published versio
Deficiency of Leishmania phosphoglycans influences the magnitude but does not affect the quality of secondary (memory) anti-Leishmania immunity
Despite inducing very low IFN-γ response and highly attenuated in vivo, infection of mice with phosphoglycan (PG) deficient Leishmania major (lpg2-) induces protection against virulent L. major challenge. Here, we show that mice infected with lpg2- L. major generate Leishmania-specific memory T cells. However, in vitro and in vivo proliferation, IL-10 and IFN-γ production by lpg2- induced memory cells were impaired in comparison to those induced by wild type (WT) parasites. Interestingly, TNF recall response was comparable to WT infected mice. Despite the impaired proliferation and IFN-γ response, lpg2- infected mice were protected against virulent L. major challenge and their T cells mediated efficient infection-induced immunity. In vivo depletion and neutralization studies with mAbs demonstrated that lpg2- L. major-induced resistance was strongly dependent on IFN-γ, but independent of TNF and CD8(+) T cells. Collectively, these data show that the effectiveness of secondary anti-Leishmania immunity depends on the quality (and not the magnitude) of IFN-γ response. These observations provide further support for consideration of lpg2- L. major as a live-attenuated candidate for leishmanization in humans since it protects strongly against virulent challenge, without inducing pathology in infected animals
Recommended from our members
ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries.
This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors
Homeostatic Regulation of Salmonella-Induced Mucosal Inflammation and Injury by IL-23
IL-12 and IL-23 regulate innate and adaptive immunity to microbial pathogens through influencing the expression of IFN-γ, IL-17, and IL-22. Herein we define the roles of IL-12 and IL-23 in regulating host resistance and intestinal inflammation during acute Salmonella infection. We find that IL-23 alone is dispensable for protection against systemic spread of bacteria, but synergizes with IL-12 for optimal protection. IL-12 promotes the production of IFN-γ by NK cells, which is required for resistance against Salmonella and also for induction of intestinal inflammation and epithelial injury. In contrast, IL-23 controls the severity of inflammation by inhibiting IL-12A expression, reducing IFN-γ and preventing excessive mucosal injury. Our studies demonstrate that IL-23 is a homeostatic regulator of IL-12-dependent, IFN-γ-mediated intestinal inflammation
Transverse electric field dragging of DNA in a nanochannel
Nanopore analysis is an emerging single-molecule strategy for non-optical and high-throughput DNA sequencing, the principle of which is based on identification of each constituent nucleobase by measuring trans-membrane ionic current blockade or transverse tunnelling current as it moves through the pore. A crucial issue for nanopore sequencing is the fact that DNA translocates a nanopore too fast for addressing sequence with a single base resolution. Here we report that a transverse electric field can be used to slow down the translocation. We find 400-fold decrease in the DNA translocation speed by adding a transverse field of 10 mV/nm in a gold-electrode-embedded silicon dioxide channel. The retarded flow allowed us to map the local folding pattern in individual DNA from trans-pore ionic current profiles. This field dragging approach may provide a new way to control the polynucleotide translocation kinetics
- …