622 research outputs found
Novel Analytical Calculation Method for the Non-Linear Ψ -i- Characteristic of Switched-Reluctance-Machines in Arbitrary Rotor Positions
Abstract The non-linear Ψ -i-characteristic is crucial for the design of switched reluctance machines. Known analytical calculations are based on complex models of the magnetic circuit or on functions needing a fitting procedure (using measured or FEM-calculated data). In this paper, a method is presented that requires only very few input data, which can be deduced easily from the geometry of the machine. Comparisons with measured data show an acceptable correlation for arbitrary rotor positions, qualifying this method to be used in the design stage of new drives
Uses and Attitudes of Old and Oldest Adults towards Self-Monitoring Health Systems
Oldest adults (80 years and over) are the fastest growing group in the total world population. This is putting pressure on national healthcare budgets, as the distribution of healthcare expenses is strongly age-dependent. One way of mitigating this burden may be to let older adults contribute to their own health directly by using self-management health systems (SMHS). SMHS might help older, including oldest, adults gain insight into their health status, and invite them to take action. However, while many studies report on user evaluations of older adults with one specific sensor system, fewer studies report on older adults’ uses and attitudes towards integrated SMHS. Moreover, most studies include participants with mean ages of 65 rather than 80. In this paper, we report on a qualitative study, consisting of a focus group interview and a user evaluation of an SMHS by 12 participants with a median age of 85 years. Three main findings were derived: Older adults (1) showed heterogeneity in computer skills, (2) found health technologies useful for others – not yet for themselves, and (3) perceived health technologies as a threat to social interaction. These findings suggest that health technologies are not ready for adoption by older adults yet, and further research on making them more accessible and desirable is required
Reconstruction of a first-order phase transition from computer simulations of individual phases and subphases
We present a new method for investigating first-order phase transitions using
Monte Carlo simulations. It relies on the multiple-histogram method and uses
solely histograms of individual phases. In addition, we extend the method to
include histograms of subphases. The free energy difference between phases,
necessary for attributing the correct statistical weights to the histograms, is
determined by a detour in control parameter space via auxiliary systems with
short relaxation times. We apply this method to a recently introduced model for
structure formation in polypeptides for which other methods fail.Comment: 13 pages in preprint mode, REVTeX, 2 Figures available from the
authors ([email protected], [email protected]
Spin dynamics simulations of the magnetic dynamics of RbMnF and direct comparison with experiment
Spin-dynamics techniques have been used to perform large-scale simulations of
the dynamic behavior of the classical Heisenberg antiferromagnet in simple
cubic lattices with linear sizes . This system is widely recognized
as an appropriate model for the magnetic properties of RbMnF.
Time-evolutions of spin configurations were determined numerically from coupled
equations of motion for individual spins using a new algorithm implemented by
Krech {\it etal}, which is based on fourth-order Suzuki-Trotter decompositions
of exponential operators. The dynamic structure factor was calculated from the
space- and time-displaced spin-spin correlation function. The crossover from
hydrodynamic to critical behavior of the dispersion curve and spin-wave
half-width was studied as the temperature was increased towards the critical
temperature. The dynamic critical exponent was estimated to be , which is slightly lower than the dynamic scaling prediction, but in
good agreement with a recent experimental value. Direct, quantitative
comparisons of both the dispersion curve and the lineshapes obtained from our
simulations with very recent experimental results for RbMnF are presented.Comment: 30 pages, RevTex, 9 figures, to appear in PR
Critical dynamics in the 2d classical XY-model: a spin dynamics study
Using spin-dynamics techniques we have performed large-scale computer
simulations of the dynamic behavior of the classical three component XY-model
(i.e. the anisotropic limit of an easy-plane Heisenberg ferromagnet), on square
lattices of size up to 192^2, for several temperatures below, at, and above
T_KT. The temporal evolution of spin configurations was determined numerically
from coupled equations of motion for individual spins by a fourth order
predictor-corrector method, with initial spin configurations generated by a
hybrid Monte Carlo algorithm. The neutron scattering function S(q,omega) was
calculated from the resultant space-time displaced spin-spin correlation
function. Pronounced spin-wave peaks were found both in the in-plane and the
out-of-plane scattering function over a wide range of temperatures. The
in-plane scattering function S^xx also has a large number of clear but weak
additional peaks, which we interpret to come from two-spin-wave scattering. In
addition, we observed a small central peak in S^xx, even at temperatures well
below the phase transition. We used dynamic finite size scaling theory to
extract the dynamic critical exponent z. We find z=1.00(4) for all T <= T_KT,
in excellent agreement with theoretical predictions, although the shape of
S(q,omega) is not well described by current theory.Comment: 31 pages, LaTex, 13 figures (38 subfigures) included as eps-files,
needs psfig, 260 K
Spin dynamics of an ultra-small nanoscale molecular magnet
We present mathematical transformations which allow us to calculate the spin dynamics of an ultra-small nanoscale molecular magnet consisting of a dimer system of classical (high) Heisenberg spins. We derive exact analytic expressions (in integral form) for the time-dependent spin autocorrelation function and several other quantities. The properties of the time-dependent spin autocorrelation function in terms of various coupling parameters and temperature are discussed in detail
How does a cadaver model work for testing ultrasound diagnostic capability for rheumatic-like tendon damage?
To establish whether a cadaver model can serve as an effective surrogate for the detection of tendon damage characteristic of rheumatoid arthritis (RA). In addition, we evaluated intraobserver and interobserver agreement in the grading of RA-like tendon tears shown by US, as well as the concordance between the US findings and the surgically induced lesions in the cadaver model. RA-like tendon damage was surgically induced in the tibialis anterior tendon (TAT) and tibialis posterior tendon (TPT) of ten ankle/foot fresh-frozen cadaveric specimens. Of the 20 tendons examined, six were randomly assigned a surgically induced partial tear; six a complete tear; and eight left undamaged. Three rheumatologists, experts in musculoskeletal US, assessed from 1 to 5 the quality of US imaging of the cadaveric models on a Likert scale. Tendons were then categorized as having either no damage, (0); partial tear, (1); or complete tear (2). All 20 tendons were blindly and independently evaluated twice, over two rounds, by each of the three observers. Overall, technical performance was satisfactory for all items in the two rounds (all values over 2.9 in a Likert scale 1-5). Intraobserver and interobserver agreement for US grading of tendon damage was good (mean κ values 0.62 and 0.71, respectively), with greater reliability found in the TAT than the TPT. Concordance between US findings and experimental tendon lesions was acceptable (70-100 %), again greater for the TAT than for the TPT. A cadaver model with surgically created tendon damage can be useful in evaluating US metric properties of RA tendon lesions
- …