305 research outputs found

    The development of a ε-polycaprolactone (PCL) scaffold for CNS repair

    Get PDF
    Potential treatment strategies for the repair of spinal cord injury (SCI) currently favour a combinatorial approach incorporating several factors, including exogenous cell transplantation and biocompatible scaffolds. The use of scaffolds for bridging the gap at the injury site is very appealing although there has been little investigation into CNS neural cell interaction and survival on such scaffolds before implantation. Previously we demonstrated that aligned micro-grooves 12.5-25 µm wide on ε-polycaprolactone (PCL) promoted aligned neurite orientation and supported myelination. In this study we identify the appropriate substrate and its topographical features required for the design of a 3D scaffold intended for transplantation in SCI. Using an established myelinating culture system of dissociated spinal cord cells, recapitulating many of the features of the intact spinal cord, we demonstrate that astrocytes plated on the topography secrete soluble factors(s) that delay oligodendrocyte differentiation but do not prevent myelination. However, as myelination does occur after a further 10-12 days in culture this does not prevent the use of PCL as a scaffold material as part of a combined strategy for the repair of SCI

    Analysis of mandelonitrile lyase and 0-glucosidase from sweet almonds by combined electrophoretic techniques

    Get PDF
    Almonds are a rich source of mandelonitrile lyase (oxynitrilase) and f3-glucosidase. The isolation of these two enzymes from sweet almonds requires fractional ammonium sulfate precipitation followed by ion-exchange chromatography on diethylaminoethyl-(DEAE) and carboxymethylcellulose (CMC) columns. In the present investigation different electrophoretic techniques such as sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), isoelectric focusing in immobilized pH gradients (IEF-IPG), and capillary electrophoresis were used to characterize these two enzymes. For the first time, B-glucosidase and oxynitrilase were separated in an immobilized pH gradient of one pH unit. Capillary zone electrophoresis (CZE) was an excellent tool for analysis of the purity of enzyme preparations, achieving complete separation of various protein constituents in only 15 min. CZE showed a resolving capacity for the separation of enzyme forms comparable to that of isoelectric focusing in an immobilized pH gradient

    6-Hydroxy-2-methylbenzofuran-4-carboxylic acid

    Get PDF
    6-Hydroxy-2-methylbenzofuran-4-carboxylic acid was synthesized in two steps, starting from 3,5-dihydroxybenzoate. The product was obtained through a direct thermal one-pot cyclization with propargyl bromide, followed by a base-catalyzed hydrolysis. Its molecular structure was elucidated by means of mono- and bidimensional NMR techniques, ESI-MS, FT-IR and single-crystal X-ray diffraction

    Towards the Inhibition of Protein–Protein Interactions (PPIs) in STAT3: Insights into a New Class of Benzothiadiazole Derivatives

    Get PDF
    Signal transducer and activator of transcription 3 (STAT3) is a validated anticancer target due to the relationship between its constitutive activation and malignant tumors. Through a virtual screening approach on the STAT3-SH2 domain, 5,6-dimethyl-1H,3H-2,1,3-benzothiadiazole-2,2-dioxide (1) was identified as a potential STAT3 inhibitor. Some benzothiadiazole derivatives were synthesized by employing a versatile methodology, and they were tested by an AlphaScreen-based assay. Among them, benzosulfamide 1 showed a significant activity with an IC50 = 15.8 ± 0.6 µM as a direct STAT3 inhibitor. Notably, we discovered that compound 1 was also able to interact with cysteine residues located around the SH2 domain. By applying mass spectrometry, liquid chromatography, NMR, and UV spectroscopy, an in-depth investigation was carried out, shedding light on its intriguing and unexpected mechanism of interaction

    Towards the Inhibition of Protein–Protein Interactions (PPIs) in STAT3: Insights into a New Class of Benzothiadiazole Derivatives

    Get PDF
    Signal transducer and activator of transcription 3 (STAT3) is a validated anticancer target due to the relationship between its constitutive activation and malignant tumors. Through a virtual screening approach on the STAT3-SH2 domain, 5,6-dimethyl-1H,3H-2,1,3-benzothiadiazole-2,2-dioxide (1) was identified as a potential STAT3 inhibitor. Some benzothiadiazole derivatives were synthesized by employing a versatile methodology, and they were tested by an AlphaScreen-based assay. Among them, benzosulfamide 1 showed a significant activity with an IC50 = 15.8 \ub1 0.6 \ub5M as a direct STAT3 inhibitor. Notably, we discovered that compound 1 was also able to interact with cysteine residues located around the SH2 domain. By applying mass spectrometry, liquid chromatography, NMR, and UV spectroscopy, an in-depth investigation was carried out, shedding light on its intriguing and unexpected mechanism of interaction

    Sorted-pareto dominance and qualitative notions of optimality

    Get PDF
    Pareto dominance is often used in decision making to compare decisions that have multiple preference values – however it can produce an unmanageably large number of Pareto optimal decisions. When preference value scales can be made commensurate, then the Sorted-Pareto relation produces a smaller, more manageable set of decisions that are still Pareto optimal. Sorted-Pareto relies only on qualitative or ordinal preference information, which can be easier to obtain than quantitative information. This leads to a partial order on the decisions, and in such partially-ordered settings, there can be many different natural notions of optimality. In this paper, we look at these natural notions of optimality, applied to the Sorted-Pareto and min-sum of weights case; the Sorted-Pareto ordering has a semantics in decision making under uncertainty, being consistent with any possible order-preserving function that maps an ordinal scale to a numerical one. We show that these optimality classes and the relationships between them provide a meaningful way to categorise optimal decisions for presenting to a decision maker

    Systemic Inflammation Changes the Site of RAGE Expression from Endothelial Cells to Neurons in Different Brain Areas

    Get PDF
    The receptor for advanced glycation endproducts (RAGE) is a transmembrane, immunoglobulin-like receptor that interacts with a broad repertoire of extracellular ligands. RAGE belongs to a family of cell adhesion molecules and is considered a key receptor in the inflammation axis and a potential contributor to the neurodegeneration. The present study aimed to investigate the content and cell localization of RAGE in the brain of Wistar rats subjected to systemic inflammation induced by a single dose of lipopolysaccharide (LPS, 5 mg/kg, i.p.). Fifteen days after LPS administration, the content of RAGE was analyzed in the prefrontal cortex (PFC), hippocampus (HIPP), cerebellum (CB), and substantia nigra (SN) were investigated. RAGE levels increased in all structures, except HIPP; however, immunohistochemistry analysis demonstrated that the cell site of RAGE expression changed from blood vessel-like structures to neuronal cells in all brain areas. Besides, the highest level of RAGE expression was found in SN. Immunofluorescence analysis in SN confirmed that RAGE expression was mainly co-localized in endothelial cells (RAGE/PECAM-1 co-staining) in untreated animals, while LPS-treated animals had RAGE expression predominantly in dopaminergic neurons (RAGE/TH co-staining). Decreased TH levels, as well as increased pro-inflammatory markers (TNF-α, IL-1β, Iba-1, GFAP, and phosphorylated ERK1/2) in SN, occurred concomitantly to RAGE stimulation in the same site. These results suggest a role for RAGE in the establishment of a neuroinflammation-neurodegeneration axis that develops as a long-term response to systemic inflammation by LPS

    Immunophenotype predicts survival time in dogs with chronic lymphocytic leukemia

    Get PDF
    Background: Chronic lymphocytic leukemia (CLL) is a hematologic disorder in dogs, but studies on prognostic factors and clinical outcome are lacking. In people, several prognostic factors have been identified and currently are used to manage patients and determine therapy.Objectives: The aim of the study was to determine if the immunophenotype of neoplastic cells predicts survival in canine CLL.Design: Retrospective study.Animals: Forty-three dogs with CLL.Procedures: Records of dogs with a final diagnosis of CLL were reviewed. For each included dog, a CBC, blood smear for microscopic reevaluation, and immunophenotyping data had to be available. Data on signalment, history, clinical findings, therapy, follow-up, as well as date and cause of death were retrieved.Results: Seventeen dogs had B-CLL (CD21+), 19 had T-CLL (CD3+ CD8+), and 7 had atypical CLL (3 CD3- CD8+, 2 CD3+ CD4- CD8-, 1 CD3+ CD4+ CD8+, and 1 CD3+ CD21+). Among the variables considered, only immunophenotype was associated with survival. Dogs with T-CLL had approximately 3-fold and 19-fold higher probability of surviving than dogs with B-CLL and atypical CLL, respectively. Old dogs with B-CLL survived significantly longer than did young dogs, and anemic dogs with T-CLL survived a significantly shorter time than dogs without anemia.Conclusions: Although preliminary, results suggested that immunophenotype is useful to predict survival in dogs with CLL. Young age and anemia are associated with shorter survival in dogs with B-CLL and T-CLL, respectively

    Structure-based drug design, synthesis and biological assays of P. falciparum Atg3-Atg8 protein-protein interaction inhibitors

    Get PDF
    The proteins involved in the autophagy (Atg) pathway have recently been considered promising targets for the development of new antimalarial drugs. In particular, inhibitors of the protein-protein interaction (PPI) between Atg3 and Atg8 of Plasmodium falciparum retarded the blood- and liver-stages of parasite growth. In this paper, we used computational techniques to design a new class of peptidomimetics mimicking the Atg3 interaction motif, which were then synthesized by click-chemistry. Surface plasmon resonance has been employed to measure the ability of these compounds to inhibit the Atg3-Atg8 reciprocal protein-protein interaction. Moreover, P. falciparum growth inhibition in red blood cell cultures was evaluated as well as the cyto-toxicity of the compounds
    corecore