192 research outputs found

    The relay-converter interface influences hydrolysis of ATP by skeletal muscle myosin II

    Get PDF
    The interface between relay and converter domain of muscle myosin is critical for optimal myosin performance. Using Drosophila melanogaster indirect flight muscle S1 we performed a kinetic analysis of the effect of mutations in the converter and relay domain. Introduction of a mutation (R759E) in the converter domain inhibits the steady-state ATPase of myosin S1, whereas an additional mutation in the relay domain (N509K) is able to restore the ATPase towards wild-type values. The S1-R759E construct showed little effect on most steps of the actomyosin ATPase cycle. The exception was a 25-30% reduction in the rate constant of the hydrolysis step, the step coupled to the cross-bridge recovery stroke and involving a change in conformation at the relay/converter domain interface. Significantly the double mutant restored the hydrolysis step to values similar to the wild-type myosin. Modelling the relay/converter interface suggests a possible interaction between converter residue 759 and relay residue 509 in the actin-detached conformation, which is lost in R759E but is restored in N509K/R759E. This detailed kinetic analysis of Drosophila myosin carrying the R759E mutation shows that the interface between the relay loop and converter domain is important for fine tuning myosin kinetics, in particular ATP binding and hydrolysis

    Dynamics of Tropomyosin in Muscle Fibers as Monitored by Saturation Transfer EPR of Bi-Functional Probe

    Get PDF
    The dynamics of four regions of tropomyosin was assessed using saturation transfer electron paramagnetic resonance in the muscle fiber. In order to fully immobilize the spin probe on the surface of tropomyosin, a bi-functional spin label was attached to i,i+4 positions via cysteine mutagenesis. The dynamics of bi-functionally labeled tropomyosin mutants decreased by three orders of magnitude when reconstituted into ā€œghost muscle fibersā€. The rates of motion varied along the length of tropomyosin with the C-terminus position 268/272 being one order of magnitude slower then N-terminal domain or the center of the molecule. Introduction of troponin decreases the dynamics of all four sites in the muscle fiber, but there was no significant effect upon addition of calcium or myosin subfragment-1

    Ultrafast glutamate sensors resolve high-frequency release at Schaffer collateral synapses

    Get PDF
    Glutamatergic synapses display a rich repertoire of plasticity mechanisms on many different time scales, involving dynamic changes in the efficacy of transmitter release as well as changes in the number and function of postsynaptic glutamate receptors. The genetically encoded glutamate sensor iGluSnFR enables visualization of glutamate release from presynaptic terminals at frequencies up to āˆ¼10 Hz. However, to resolve glutamate dynamics during high-frequency bursts, faster indicators are required. Here, we report the development of fast (iGluf) and ultrafast (iGluu) variants with comparable brightness but increased Kd for glutamate (137 Ī¼M and 600 Ī¼M, respectively). Compared with iGluSnFR, iGluu has a sixfold faster dissociation rate in vitro and fivefold faster kinetics in synapses. Fitting a three-state model to kinetic data, we identify the large conformational change after glutamate binding as the rate-limiting step. In rat hippocampal slice culture stimulated at 100 Hz, we find that iGluu is sufficiently fast to resolve individual glutamate release events, revealing that glutamate is rapidly cleared from the synaptic cleft. Depression of iGluu responses during 100-Hz trains correlates with depression of postsynaptic EPSPs, indicating that depression during high-frequency stimulation is purely presynaptic in origin. At individual boutons, the recovery from depression could be predicted from the amount of glutamate released on the second pulse (paired pulse facilitation/depression), demonstrating differential frequency-dependent filtering of spike trains at Schaffer collateral boutons

    Considering the role of cognitive control in expert performance

    Get PDF
    Ā© 2014, Springer Science+Business Media Dordrecht. Dreyfus and Dreyfusā€™ (1986) influential phenomenological analysis of skill acquisition proposes that expert performance is guided by non-cognitive responses which are fast, effortless and apparently intuitive in nature. Although this model has been criticised (e.g., by Breivik Journal of Philosophy of Sport, 34, 116ā€“134 2007, Journal of the Philosophy of Sport, 40, 85ā€“106 2013; Eriksen 2010; Montero Inquiry:An interdisciplinary Journal of Philosophy, 53, 105ā€“122 2010; Montero and Evans 2011) for over-emphasising the role that intuition plays in facilitating skilled performance, it does recognise that on occasions (e.g., when performance goes awry for some reason) a form of ā€˜detached deliberative rationalityā€™ may be used by experts to improve their performance. However, Dreyfus and Dreyfus (1986) see no role for calculative problem solving or deliberation (i.e., drawing on rules or mental representations) when performance is going well. In the current paper, we draw on empirical evidence, insights from athletes, and phenomenological description to argue that ā€˜continuous improvementā€™ (i.e., the phenomenon whereby certain skilled performers appear to be capable of increasing their proficiency even though they are already experts; Toner and Moran 2014) among experts is mediated by cognitive (or executive) control in three distinct sporting situations (i.e., in training, during pre-performance routines, and while engaged in on-line skill execution). We conclude by arguing that Sutton et al. Journal of the British Society for Phenomenology, 42, 78ā€“103 (2011) ā€˜applying intelligence to the reflexesā€™ (AIR) approach may help to elucidate the process by which expert performers achieve continuous improvement through analytical/mindful behaviour during training and competition

    Approximation for Cooperative Interactions of a Spatially-Detailed Cardiac Sarcomere Model

    Get PDF
    We developed a novel ordinary differential equation (ODE) model, which produced results that correlated well with the Monte Carlo (MC) simulation when applied to a spatially-detailed model of the cardiac sarcomere. Configuration of the novel ODE model was based on the Ising model of myofilaments, with the ā€œco-operative activationā€ effect introduced to incorporate nearest-neighbor interactions. First, a set of parameters was estimated using arbitrary Ca transient data to reproduce the combinational probability for the states of three consecutive regulatory units, using single unit probabilities for central and neighboring units in the MC simulation. The parameter set thus obtained enabled the calculation of the state transition of each unit using the ODE model with reference to the neighboring states. The present ODE model not only provided good agreement with the MC simulation results but was also capable of reproducing a wide range of experimental results under both steady-state and dynamic conditions including shortening twitch. The simulation results suggested that the nearest-neighbor interaction is a reasonable approximation of the cooperativity based on end-to-end interactions. Utilizing the modified ODE model resulted in a reduction in computational costs but maintained spatial integrity and co-operative effects, making it a powerful tool in cardiac modeling

    Insights into the Importance of Hydrogen Bonding in the Ī³-Phosphate Binding Pocket of Myosin: Structural and Functional Studies of Serine 236ā€ ,ā€”

    Get PDF
    The active site of myosin contains a group of highly conserved amino acid residues whose roles in nucleotide hydrolysis and energy transduction might appear to be obvious from the initial structural and kinetic analyses but become less clear on deeper investigation. One such residue is Ser236 (Dictyostelium discoideum myosin II numbering) which was proposed to be involved in a hydrogen transfer network during Ī³-phosphate hydrolysis of ATP, which would imply a critical function in ATP hydrolysis and motility. The S236A mutant protein shows a comparatively small decrease in hydrolytic activity and motility, and thus this residue does not appear to be essential. To understand better the contribution of Ser236 to the function of myosin, structural and kinetic studies have been performed on the S236A mutant protein. The structures of the D. discoideum motor domain (S1dC) S236A mutant protein in complex with magnesium pyrophosphate, MgAMPPNP, and MgADPĀ·vanadate have been determined. In contrast to the previous structure of wild-type S1dC, the S236AĀ·MgAMPPNP complex crystallized in the closed state. Furthermore, transient-state kinetics showed a 4-fold reduction of the nucleotide release step, suggesting that the mutation stabilizes a closed active site. The structures show that a water molecule approximately adopts the location of the missing hydroxyl of Ser236 in the magnesium pyrophosphate and MgAMPPNP structures. This study suggests that the S236A mutant myosin proceeds via a different structural mechanism than wild-type myosin, where the alternate mechanism is able to maintain near normal transient-state kinetic values

    Temperature sensitive point mutations in fission yeast tropomyosin have long range effects on the stability and function of the actin- tropomyosin copolymer

    Get PDF
    The actin cytoskeleton is modulated by regulatory actin-binding proteins which fine- tune the dynamic properties of the actin polymer to regulate function. One such actin-binding protein is tropomyosin (Tpm), a highly-conserved alpha-helical dimer which stabilises actin and regulates interactions with other proteins. Temperature sensitive mutants of Tpm are invaluable tools in the study of actin filament dependent processes, critical to the viability of a cell. Here we investigated the molecular basis of the temperature sensitivity of fission yeast Tpm mutants which fail to undergo cytokinesis at the restrictive temperatures. Comparison of Contractile Actomyosin Ring (CAR) constriction as well as cell shape and size revealed the cdc8.110 or cdc8.27 mutant alleles displayed significant differences in their temperature sensitivity and impact upon actin dependent functions during the cell cycle. In vitro analysis revealed the mutant proteins displayed a different reduction in thermostability, and unexpectedly yield two discrete unfolding domains when acetylated on their amino-termini. Our findings demonstrate how subtle changes in structure (point mutations or acetylation) alter the stability not simply of discrete regions of this conserved cytoskeletal protein but of the whole molecule. This differentially impacts the stability and cellular organisation of this essential cytoskeletal protein

    Coarse-Graining Protein Structures With Local Multivariate Features from Molecular Dynamics

    Get PDF
    A multivariate statistical theory, local feature analysis (LFA), extracts functionally relevant domains from molecular dynamics (MD) trajectories. The LFA representations, like those of principal component analysis (PCA), are low dimensional and provide a reduced basis set for collective motions of simulated proteins, but the local features are sparsely distributed and spatially localized, in contrast to global PCA modes. One key problem in the assignment of local features is the coarse-graining of redundant LFA output functions by means of seed atoms. One can solve the combinatorial problem by adding seed atoms one after another to a growing set, minimizing a reconstruction error at each addition. This allows for an efficient implementation, but the sequential algorithm does not guarantee the optimal mutual correlation of the sequentially assigned features. Here, we present a novel coarse-graining algorithm for proteins that directly minimizes the mutual correlation of seed atoms by Monte Carlo (MC) simulations. Tests on MD trajectories of two biological systems, bacteriophage T4 lysozyme and myosin II motor domain S1, demonstrate that the new algorithm provides statistically reproducible results and describes functionally relevant dynamics. The well-known undersampling of large-scale motion by short MD simulations is apparent also in our model, but the new coarse-graining offers a major advantage over PCA; converged features are invariant across multiple windows of the trajectory, dividing the protein into converged regions and a smaller number of localized, undersampled regions. In addition to its use in structure classification, the proposed coarse-graining thus provides a localized measure of MD sampling efficiency

    An analysis of the temperature dependence of force, during steady shortening at different velocities, in (mammalian) fast muscle fibres

    Get PDF
    We examined, over a wide range of temperatures (10ā€“35Ā°C), the isometric tension and tension during ramp shortening at different velocities (0.2ā€“4 L0/s) in tetanized intact fibre bundles from a rat fast (flexor hallucis brevis) muscle; fibre length (L0) was 2.2Ā mm and sarcomere length ~2.5Ā Ī¼m. During a ramp shortening, the tension change showed an initial inflection of small amplitude (P1), followed by a larger exponential decline towards an approximate steady level; the tension continued to decline slowly afterwards and the approximate steady tension at a given velocity was estimated as the tension (P2) at the point of intersection between two linear slopes, as previously described (Roots etĀ al. 2007). At a given temperature, the tension P2 declined to a lower level and at a faster rate (from an exponential curve fit) as the shortening velocity was increased; the temperature sensitivity of the rate of tension decline during ramp shortening at different velocities was low (Q10 0.9ā€“1.5). The isometric tension and the P2 tension at a given shortening velocity increased with warming so that the relation between tension and (reciprocal) temperature was sigmoidal in both. In isometric muscle, the temperature T0.5 for half-maximal tension was ~10Ā°C, activation enthalpy change (āˆ†H) was ~100Ā kJĀ molāˆ’1 and entropy change (āˆ†S) ~350Ā JĀ molāˆ’1Ā Kāˆ’1. In shortening, these were increased with increase of velocity so that at a shortening velocity (~4 L0/s) producing maximal power at 35Ā°C, T0.5 was ~28Ā°C, āˆ†H was ~200Ā kJĀ molāˆ’1 and āˆ†SĀ ~Ā 700 JĀ molāˆ’1Ā Kāˆ’1; the same trends were seen in the tension data from isotonic release experiments on intact muscle and in ramp shortening experiments on maximally Ca-activated skinned fibres. In general, our findings show that the sigmoidal relation between force and temperature can be extended from isometric to shortening muscle; the implications of the findings are discussed in relation to the crossbridge cycle. The data indicate that the endothermic, entropy driven process that underlies crossbridge force generation in isometric muscle (Zhao and Kawai 1994; Davis, 1998) is even more pronounced in shortening muscle, i.e. when doing external work
    • ā€¦
    corecore