1,331 research outputs found
Fundamental Performance of a Dispersed Fixed Delay Interferometer In Searching For Planets Around M Dwarfs
We present a new method to calculate fundamental Doppler measurement limits
with a dispersed fixed-delay interferometer (DFDI) in the near infrared
wavelength region for searching for exoplanets around M dwarfs in the coming
decade. It is based on calculating the Q factor, a measure of flux-normalized
Doppler sensitivity in the fringing spectra created with DFDI. We calculate the
Q factor as a function of spectral resolution R, stellar projected rotational
velocity V sini, stellar effective temperature T_eff and optical path
difference (OPD) of the interferometer. We also compare the DFDI Q factor to
that for the popular cross-dispersed echelle spectrograph method (the direct
echelle (DE) method). Given the IR Doppler measurement is likely to be
detector-limited for a while, we introduce new merit functions, which is
directly related to photon-limited RV uncertainty, to evaluate Doppler
performance with the DFDI and DE methods. We find that DFDI has strength in
wavelength coverage and multi-object capability over the DE for a limited
detector resource. We simulate the performance of the InfraRed Exoplanet
Tracker (IRET) based on the DFDI design, being considered for the next
generation IR Doppler measurements. The predicted photon-limited RV uncertainty
suggests that IRET is capable of detecting Earth-like exoplanets in habitable
zone around nearby bright M dwarfs if they exist. A new method is developed to
quantitatively estimate the influence of telluric lines on RV uncertainty. Our
study shows that photon-limited RV uncertainty can be reached if 99% of the
strength of telluric lines can be removed from the measured stellar spectra. At
low to moderate levels of telluric line strength removal (50% to 90%), the
optimal RV uncertainty is typically a factor of 2-3 times larger than
photon-limited RV uncertainty.Comment: 43 pages, 20 figures, 6 tables. Accepted by Ap
Measuring Stellar Radial Velocities with a Dispersed Fixed-Delay Interferometer
We demonstrate the ability to measure precise stellar barycentric radial
velocities with the dispersed fixed-delay interferometer technique using the
Exoplanet Tracker (ET), an instrument primarily designed for precision
differential Doppler velocity measurements using this technique. Our
barycentric radial velocities, derived from observations taken at the KPNO 2.1
meter telescope, differ from those of Nidever et al. by 0.047 km/s (rms) when
simultaneous iodine calibration is used, and by 0.120 km/s (rms) without
simultaneous iodine calibration. Our results effectively show that a Michelson
interferometer coupled to a spectrograph allows precise measurements of
barycentric radial velocities even at a modest spectral resolution of R ~ 5100.
A multi-object version of the ET instrument capable of observing ~500 stars per
night is being used at the Sloan 2.5 m telescope at Apache Point Observatory
for the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS),
a wide-field radial velocity survey for extrasolar planets around TYCHO-2 stars
in the magnitude range 7.6<V<12. In addition to precise differential
velocities, this survey will also yield precise barycentric radial velocities
for many thousands of stars using the data analysis techniques reported here.
Such a large kinematic survey at high velocity precision will be useful in
identifying the signature of accretion events in the Milky Way and
understanding local stellar kinematics in addition to discovering exoplanets,
brown dwarfs and spectroscopic binaries.Comment: 9 pages, 4 figures. Accepted for publication in Ap
Disrupting the Indian hedgehog signaling pathway in vivo attenuates surgically induced osteoarthritis progression in Col2a1-CreERT2; Ihhfl/fl mice
Introduction: Previous observations implicate Indian hedgehog (Ihh) signaling in osteoarthritis (OA) development because it regulates chondrocyte hypertrophy and matrix metallopeptidase 13 (MMP-13) expression. However, there is no direct genetic evidence for the role of Ihh in OA, because mice with cartilage or other tissue-specific deletion of the Ihh gene die shortly after birth. We evaluated the role of Ihh in vivo via a Cre-loxP-mediated approach to circumvent the early death caused by Ihh deficiency. Methods: To evaluate the role of Ihh in OA development, Ihh was specifically deleted in murine cartilage using an Ihh conditional deletion construct (Col2a1-CreERT2; Ihhfl/fl). The extent of cartilage degradation and OA progression after Ihh deletion was assessed by histological analysis, immunohistochemistry, real-time PCR and in vivo fluorescence molecular tomography (FMT) 2 months after OA was induced by partial medial meniscectomy. The effect of Ihh signaling on cartilage was compared between Ihh-deleted mice and their control littermates. Results: Only mild OA changes were observed in Ihh-deleted mice, while control mice displayed significantly more cartilage damage. Typical OA markers such as type X collagen and MMP-13 were decreased in Ihh-deleted mice. In vivo FMT demonstrated decreased cathepsins and MMP activity in knee joints of animals with deletion of Ihh. Conclusions: These findings support the protective role of Ihh deletion in surgically induced OA. Thus, our findings suggest the potential to develop new therapeutic strategies that can prevent and treat OA by inhibiting Ihh signaling in chondrocytes
Accurate Atmospheric Parameters at Moderate Resolution Using Spectral Indices: Preliminary Application to the MARVELS Survey
Studies of Galactic chemical and dynamical evolution in the solar
neighborhood depend on the availability of precise atmospheric parameters
(Teff, [Fe/H] and log g) for solar-type stars. Many large-scale spectroscopic
surveys operate at low to moderate spectral resolution for efficiency in
observing large samples, which makes the stellar characterization difficult due
to the high degree of blending of spectral features. While most surveys use
spectral synthesis, in this work we employ an alternative method based on
spectral indices to determine the atmospheric parameters of a sample of nearby
FGK dwarfs and subgiants observed by the MARVELS survey at moderate resolving
power (R~12,000). We have developed three codes to automatically normalize the
observed spectra, measure the equivalent widths of the indices and, through the
comparison of those with values calculated with pre-determined calibrations,
derive the atmospheric parameters of the stars. The calibrations were built
using a sample of 309 stars with precise stellar parameters obtained from the
analysis of high-resolution FEROS spectra. A validation test of the method was
conducted with a sample of 30 MARVELS targets that also have reliable
atmospheric parameters from high-resolution spectroscopic analysis. Our
approach was able to recover the parameters within 80 K for Teff, 0.05 dex for
[Fe/H] and 0.15 dex for log g, values that are lower or equal to the typical
external uncertainties found between different high-resolution analyzes. An
additional test was performed with a subsample of 138 stars from the ELODIE
stellar library and the literature atmospheric parameters were recovered within
125 K for Teff, 0.10 dex for [Fe/H] and 0.29 dex for log g. These results show
that the spectral indices are a competitive tool to characterize stars with the
intermediate resolution spectra.Comment: Accepted for publication in AJ. Abstract edited to comply with arXiv
standards regarding the number of character
Recommended from our members
The SDSS-III APOGEE Radial Velocity Survey Of M Dwarfs. I. Description Of The Survey And Science Goals
We are carrying out a large ancillary program with the Sloan Digital Sky Survey, SDSS-III, using the fiber-fed multi-object near-infrared APOGEE spectrograph, to obtain high-resolution H-band spectra of more than 1200 M dwarfs. These observations will be used to measure spectroscopic rotational velocities, radial velocities, physical stellar parameters, and variability of the target stars. Here, we describe the target selection for this survey, as well as results from the first year of scientific observations based on spectra that will be publicly available in the SDSS-III DR 10 data release. As part of this paper we present radial velocities and rotational velocities of over 200 M dwarfs, with a v sin i precision of similar to 2 km s(-1) a measurement floor at v sin i = 4 km s(-1). This survey significantly increases the number of M dwarfs studied for rotational velocities and radial velocity variability (at similar to 100-200 m s(-1)), and will inform and advance the target selection for planned radial velocity and photometric searches for low-mass exoplanets around M dwarfs, such as the Habitable Zone Planet Finder, CARMENES, and TESS. Multiple epochs of radial velocity observations enable us to identify short period binaries, and adaptive optics imaging of a subset of stars enables the detection of possible stellar companions at larger separations. The high-resolution APOGEE spectra, covering the entire H band, provide the opportunity to measure physical stellar parameters such as effective temperatures and metallicities for many of these stars. At the culmination of this survey, we will have obtained multi-epoch spectra and radial velocities for over 1400 stars spanning the spectral range M0-L0, providing the largest set of near-infrared M dwarf spectra at high resolution, and more than doubling the number of known spectroscopic a sin i values for M dwarfs. Furthermore, by modeling telluric lines to correct for small instrumental radial velocity shifts, we hope to achieve a relative velocity precision floor of 50 m s(-1) for bright M dwarfs. With three or more epochs, this precision is adequate to detect substellar companions, including giant planets with short orbital periods, and flag them for higher-cadence followup. We present preliminary, and promising, results of this telluric modeling technique in this paper.Center for Exoplanets and Habitable WorldsPennsylvania State UniversityEberly College of SciencePennsylvania Space Grant ConsortiumNSF AST 1006676, AST 1126413National Science FoundationNational Aeronautics and Space Administration NNX-08AE38A, NNX13AB03GAlfred P. Sloan FoundationU.S. Department of Energy Oce of ScienceUniversity of ArizonaBrazilian Participation GroupBrookhaven National LaboratoryUniversity of CambridgeCarnegie Mellon UniversityUniversity of FloridaFrench Participation GroupGerman Participation GroupHarvard UniversityInstituto de Astrosica de CanariasMichigan State/Notre Dame/JINA Participation GroupJohns Hopkins UniversityLawrence Berkeley National LaboratoryMax Planck Institute for AstrophysicsMax Planck Institute for Extraterrestrial PhysicsNew Mexico State UniversityNew York UniversityOhio State UniversityUniversity of PortsmouthPrinceton UniversitySpanish Participation GroupUniversity of TokyoUniversity of UtahVanderbilt UniversityUniversity of VirginiaUniversity of WashingtonYale UniversityMcDonald Observator
The SDSS-III APOGEE Radial Velocity Survey of M dwarfs I: Description of Survey and Science Goals
We are carrying out a large ancillary program with the SDSS-III, using the
fiber-fed multi-object NIR APOGEE spectrograph, to obtain high-resolution
H-band spectra of more than 1200 M dwarfs. These observations are used to
measure spectroscopic rotational velocities, radial velocities, physical
stellar parameters, and variability of the target stars. Here, we describe the
target selection for this survey and results from the first year of scientific
observations based on spectra that is publicly available in the SDSS-III DR10
data release. As part of this paper we present RVs and vsini of over 200 M
dwarfs, with a vsini precision of ~2 km/s and a measurement floor at vsini = 4
km/s. This survey significantly increases the number of M dwarfs studied for
vsini and RV variability (at ~100-200 m/s), and will advance the target
selection for planned RV and photometric searches for low mass exoplanets
around M dwarfs, such as HPF, CARMENES, and TESS. Multiple epochs of radial
velocity observations enable us to identify short period binaries, and AO
imaging of a subset of stars enables the detection of possible stellar
companions at larger separations. The high-resolution H-band APOGEE spectra
provide the opportunity to measure physical stellar parameters such as
effective temperatures and metallicities for many of these stars. At the
culmination of this survey, we will have obtained multi-epoch spectra and RVs
for over 1400 stars spanning spectral types of M0-L0, providing the largest set
of NIR M dwarf spectra at high resolution, and more than doubling the number of
known spectroscopic vsini values for M dwarfs. Furthermore, by modeling
telluric lines to correct for small instrumental radial velocity shifts, we
hope to achieve a relative velocity precision floor of 50 m/s for bright M
dwarfs. We present preliminary results of this telluric modeling technique in
this paper.Comment: Submitted to Astronomical Journa
The First Extrasolar Planet Discovered with a New Generation High Throughput Doppler Instrument
We report the detection of the first extrasolar planet, ET-1 (HD 102195b),
using the Exoplanet Tracker (ET), a new generation Doppler instrument. The
planet orbits HD 102195, a young star with solar metallicity that may be part
of the local association. The planet imparts radial velocity variability to the
star with a semiamplitude of m s and a period of 4.11 days.
The planetary minimum mass () is .Comment: 42 pages, 11 figures and 5 tables, Accepted for publication in Ap
- …
