82 research outputs found

    Targeting signaling and apoptotic pathways involved in chemotherapeutic drug-resistance of hematopoietic cells

    Get PDF
    A critical problem in leukemia as well as other cancer therapies is the development of chemotherapeutic drug-resistance. We have developed models of hematopoietic drug resistance that are based on expression of dominant-negative TP53 [TP53 (DN)] or constitutively-active MEK1 [MEK1(CA)] oncogenes in the presence of chemotherapeutic drugs. In human cancer, functional TP53 activity is often lost in human cancers. Also, activation of the Raf/MEK/ERK pathway frequently occurs due to mutations/ amplification of upstream components of this and other interacting pathways. FL5.12 is an interleukin-3 (IL−3) dependent hematopoietic cell line that is sensitive to doxorubicin (a.k.a Adriamycin). FL/Doxo is a derivative cell line that was isolated by culturing the parental FL5.12 cells in doxorubicin for prolonged periods of time. FL/Doxo + TP53 (DN) and FL/Doxo + MEK1 (CA) are FL/Doxo derivate cell lines that were infected with retrovirus encoding TP53 (DN) or MEK1 (CA) and are more resistant to doxorubicin than FL/Doxo cells. This panel of cell lines displayed differences in the sensitivity to inhibitors that suppress mTORC1, BCL2/BCLXL, MEK1 or MDM2 activities, as well as, the proteasomal inhibitor MG132. The expression of key genes involved in cell growth and drug-resistance (e.g., MDM2, MDR1, BAX) also varied in these cells. Thus, we can begin to understand some of the key genes that are involved in the resistance of hematopoietic cells to chemotherapeutic drugs and targeted therapeutics

    NMDA receptor antagonists can enhance or impair learning performance in animals.

    No full text
    The effects of NMDA receptor antagonism on learning and memory were investigated using competitive (DL-2-amino-7-phosphonoheptanoate, AP7) and non-competitive (MK 801) blockers in three different learning tasks. Administration (i.p.) of drugs prior to training resulted in impaired learning performance in the place-navigation and dark-avoidance paradigms, and improved performance in the step-down passive avoidance task; however, using this treatment protocol, the possibility of drug-induced non-mnemonic effects modifying learning performance could not be excluded. Drug administration immediately post-trial had no effect in the place-navigation paradigm, and improved retention performance in the dark-avoidance and step-down avoidance tasks. The similar results obtained with both types of antagonist indicate that the observed effects are indeed due to NMDA receptor blockade, and hence that such blockade modifies learning in a task-dependent manner. Exclusion of non-mnemonic effects by using the post-trial treatment regime demonstrates that NMDA antagonists facilitate learning of passive avoidance tasks
    corecore