544 research outputs found

    Microbial fuel cells directly powering a microcomputer

    Get PDF
    © 2019 The Authors Many studies have demonstrated that microbial fuel cells (MFC) can be energy-positive systems and power various low power applications. However, to be employed as a low-level power source, MFC systems rely on energy management circuitry, used to increase voltage levels and act as energy buffers, thus delivering stable power outputs. But stability comes at a cost, one that needs to be kept minimal for the technology to be deployed into society. The present study reports, for the first time, the use of a MFC system that directly and continuously powered a small application without any electronic intermediary. A cascade comprising four membrane-less MFCs modules and producing an average of 62 mA at 2550 mV (158 mW) was used to directly power a microcomputer and its screen (Gameboy Color, Nintendo®). The polarisation experiment showed that the cascade produced 164 mA, at the minimum voltage required to run the microcomputer (ca. 1.850 V). As the microcomputer only needed ≈70 mA, the cascade ran at a higher voltage (2.550 V), thus, maintaining the individual modules at a high potential (>0.55 V). Running the system at these high potentials helped avoid cell reversal, thus delivering a stable level of energy without the support of any electronics

    Exploring the Support Needs of Family Caregivers of Patients with Brain Cancer Using the CSNAT: A Comparative Study with Other Cancer Groups

    Get PDF
    A substantial burden is placed on family caregivers of patients diagnosed with brain cancers. Despite this, the support needs of the caregivers are often under-recognised and not addressed adequately in current routine and patient centred clinical care. The Care Support Needs Assessment Tool (CSNAT) is a validated instrument designed to systematically identify and address caregiver needs. It has been trialled in an Australian palliative care community setting using a stepped wedge cluster design involving 322 family carers of terminally ill patients. The current article reports on a subset from this trial, 29 caregivers of patients with primary brain cancer, and compares their profile and outcomes to those of other cancer groups. Caregiver strain was assessed using the Family Appraisal of Caregiving Questionnaire, caregiver physical and mental wellbeing using SF12 and caregiver workload using a questionnaire on support with activities of daily living (ADL). In comparison to caregivers of patients with all other cancers, the primary brain cancer group had significantly higher levels of caregiver strain, lower levels of mental wellbeing and a higher level of ADL workload. Their physical wellness also deteriorated significantly over time.An action plan approach led to practical solutions for addressing highlighted concerns. Four themes evolved from the family caregivers’ feedback interviews: The extremely challenging caregiver experience with brain cancer; the systematic and practical approach of the CSNAT during rapid changes; connection with health professionals, feeling acknowledged and empowered; and timely advice and assurance of support during the caregiving journey. This preliminary study has demonstrated that the CSNAT provides a practical and useful tool for assessing the support needs of family caregivers of patients with brain cancer and has provided the basis for a larger scale, longitudinal study that allows a more detailed characterisation of the evolving caregiver needs at different stages of the disease

    Well-Being as Harmony

    Get PDF
    In this paper, I sketch out a novel theory of well-being according to which well-being is constituted by harmony between mind and world. The notion of harmony I develop has three aspects. First there is correspondence between mind and world in the sense that events in the world match the content of our mental states. Second there is positive orientation towards the world, meaning that we have pro-attitudes towards the world we find ourselves in. Third there is fitting response to the world. Taken together these three aspects make up an ideal of being attuned to, or at home in, the world. Such harmony between mind and world constitutes well-being. Its opposite – being disoriented, ill-at-ease in, or hostile to the world – makes a life go poorly. And, as we shall see, many of the things that intuitively contribute to well-being are instantiating one or more of the three aspects of harmony

    Enhancement of microbial fuel cell performance by introducing a nano-composite cathode catalyst

    Get PDF
    © 2018 The Authors Iron aminoantipyrine (Fe-AAPyr), graphene nanosheets (GNSs) derived catalysts and their physical mixture Fe-AAPyr-GNS were synthesized and investigated as cathode catalysts for oxygen reduction reaction (ORR) with the activated carbon (AC) as a baseline. Fe-AAPyr catalyst was prepared by Sacrificial Support Method (SSM) with silica as a template and aminoantipyrine (AAPyr) as the organic precursor. 3D-GNS was prepared using modified Hummers method technique. The Oxygen Reduction Reaction (ORR) activity of these catalysts at different loadings was investigated by using rotating ring disk (RRDE) electrode setup in the neutral electrolyte. The performance of the catalysts integrated into air-breathing cathode was also investigated. The co-presence of GNS (2 mg cm−2) and Fe-AAPyr (2 mg cm−2) catalyst within the air-breathing cathode resulted in the higher power generation recorded in MFC of 235 ± 1 μW cm−2. Fe-AAPyr catalyst itself showed high performance (217 ± 1 μW cm−2), higher compared to GNS (150 ± 5 μW cm−2) while AC generated power of roughly 104 μW cm−2

    Miniaturized supercapacitors: key materials and structures towards autonomous and sustainable devices and systems

    Get PDF
    © 2016 The Authors Supercapacitors (SCs) are playing a key role for the development of self-powered and self-sustaining integrated systems for different fields ranging from remote sensing, robotics and medical devices. SC miniaturization and integration into more complex systems that include energy harvesters and functional devices are valuable strategies that address system autonomy. Here, we discuss about novel SC fabrication and integration approaches. Specifically, we report about the results of interdisciplinary activities on the development of thin, flexible SCs by an additive technology based on Supersonic Cluster Beam Deposition (SCBD) to be implemented into supercapacitive electrolyte gated transistors and supercapacitive microbial fuel cells. Such systems integrate at materials level the specific functions of devices, like electric switch or energy harvesting with the reversible energy storage capability. These studies might open new frontiers for the development and application of new multifunction-energy storage elements

    Insights into corn genes derived from large-scale cDNA sequencing

    Get PDF
    We present a large portion of the transcriptome of Zea mays, including ESTs representing 484,032 cDNA clones from 53 libraries and 36,565 fully sequenced cDNA clones, out of which 31,552 clones are non-redundant. These and other previously sequenced transcripts have been aligned with available genome sequences and have provided new insights into the characteristics of gene structures and promoters within this major crop species. We found that although the average number of introns per gene is about the same in corn and Arabidopsis, corn genes have more alternatively spliced isoforms. Examination of the nucleotide composition of coding regions reveals that corn genes, as well as genes of other Poaceae (Grass family), can be divided into two classes according to the GC content at the third position in the amino acid encoding codons. Many of the transcripts that have lower GC content at the third position have dicot homologs but the high GC content transcripts tend to be more specific to the grasses. The high GC content class is also enriched with intronless genes. Together this suggests that an identifiable class of genes in plants is associated with the Poaceae divergence. Furthermore, because many of these genes appear to be derived from ancestral genes that do not contain introns, this evolutionary divergence may be the result of horizontal gene transfer from species not only with different codon usage but possibly that did not have introns, perhaps outside of the plant kingdom. By comparing the cDNAs described herein with the non-redundant set of corn mRNAs in GenBank, we estimate that there are about 50,000 different protein coding genes in Zea. All of the sequence data from this study have been submitted to DDBJ/GenBank/EMBL under accession numbers EU940701–EU977132 (FLI cDNA) and FK944382-FL482108 (EST)

    Co-culturing human prostate carcinoma cells with hepatocytes leads to increased expression of E-cadherin

    Get PDF
    Metastasis is a multi-step process wherein tumour cells detach from the primary mass, migrate through barrier matrices, gain access to conduits to disseminate, and subsequently survive and proliferate in an ectopic site. During the initial invasion stage, prostate carcinoma cells undergo epithelial–mesenchymal-like transition with gain of autocrine signalling and loss of E-cadherin, hallmarks that appear to enable invasion and dissemination. However, some metastases express E-cadherin, and we found close connections between prostate carcinoma cells and hepatocytes in a liver microtissue bioreactor. We hypothesise that phenotypic plasticity occurs late in prostate cancer progression at the site of ectopic seeding. Immunofluorescence staining for E-cadherin in co-cultures of hepatocytes and DU-145 prostate cancer cells revealed E-cadherin upregulation at peripheral sites of contact by day 2 of co-culture; E-cadherin expression also increased in PC-3 cells in co-culture. These carcinoma cells bound to hepatocytes in an E-cadherin-dependent manner. Although the signals by which the hepatocytes elicited E-cadherin expression remain undetermined, it appeared related to downregulation of epidermal growth factor receptor (EGFR) signalling. Inhibition of autocrine EGFR signalling increased E-cadherin expression and cell–cell heterotypic adhesion; further, expression of a downregulation-resistant EGFR variant prevented E-cadherin upregulation. These findings were supported by finding E-cadherin and catenins but not activated EGFR in human prostate metastases to the liver. We conclude that the term epithelial–mesenchymal transition only summarises the transient downregulation of E-cadherin for invasion with re-expression of E-cadherin being a physiological consequence of metastatic seeding

    Analysis of Expressed Sequence Tags of the Cyclically Parthenogenetic Rotifer Brachionus plicatilis

    Get PDF
    Background. Rotifers are among the most common non-arthropod animals and are the most experimentally tractable members of the basal assemblage of metazoan phyla known as Gnathifera. The monogonont rotifer Brachionus plicatilis is a developing model system for ecotoxicology, aquatic ecology, cryptic speciation, and the evolution of sex, and is an important food source for finfish aquaculture. However, basic knowledge of the genome and transcriptome of any rotifer species has been lacking. Methodology/Principal Findings. We generated and partially sequenced a cDNA library from B. plicatilis and constructed a database of over 2300 expressed sequence tags corresponding to more than 450 transcripts. About 20% of the transcripts had no significant similarity to database sequences by BLAST; most of these contained open reading frames of significant length but few had recognized Pfam motifs. Sixteen transcripts accounted for 25% of the ESTs; four of these had no significant similarity to BLAST or Pfam databases. Putative up- and downstream untranslated regions are relatively short and AT rich. In contrast to bdelloid rotifers, there was no evidence of a conserved trans-spliced leader sequence among the transcripts and most genes were single-copy. Conclusions/Significance. Despite the small size of this EST project it revealed several important features of the rotifer transcriptome and of individual monogonont genes. Because there is little genomic data for Gnathifera, the transcripts we found with no known function may represent genes that are species-, class-, phylum- or even superphylum-specific; the fact that some are among the most highly expressed indicates their importance. The absence of trans-spliced leader exons in this monogonont species contrasts with their abundance in bdelloid rotifers and indicates that the presence of this phenomenon can vary at the subphylum level. Our EST database provides a relatively large quantity of transcript-level data for B. plicatilis, and more generally of rotifers and other gnathiferan phyla, and can be browsed and searched at gmod.mbl.edu

    Genomic Characterization of Methanomicrobiales Reveals Three Classes of Methanogens

    Get PDF
    BACKGROUND:Methanomicrobiales is the least studied order of methanogens. While these organisms appear to be more closely related to the Methanosarcinales in ribosomal-based phylogenetic analyses, they are metabolically more similar to Class I methanogens. METHODOLOGY/PRINCIPAL FINDINGS:In order to improve our understanding of this lineage, we have completely sequenced the genomes of two members of this order, Methanocorpusculum labreanum Z and Methanoculleus marisnigri JR1, and compared them with the genome of a third, Methanospirillum hungatei JF-1. Similar to Class I methanogens, Methanomicrobiales use a partial reductive citric acid cycle for 2-oxoglutarate biosynthesis, and they have the Eha energy-converting hydrogenase. In common with Methanosarcinales, Methanomicrobiales possess the Ech hydrogenase and at least some of them may couple formylmethanofuran formation and heterodisulfide reduction to transmembrane ion gradients. Uniquely, M. labreanum and M. hungatei contain hydrogenases similar to the Pyrococcus furiosus Mbh hydrogenase, and all three Methanomicrobiales have anti-sigma factor and anti-anti-sigma factor regulatory proteins not found in other methanogens. Phylogenetic analysis based on seven core proteins of methanogenesis and cofactor biosynthesis places the Methanomicrobiales equidistant from Class I methanogens and Methanosarcinales. CONCLUSIONS/SIGNIFICANCE:Our results indicate that Methanomicrobiales, rather than being similar to Class I methanogens or Methanomicrobiales, share some features of both and have some unique properties. We find that there are three distinct classes of methanogens: the Class I methanogens, the Methanomicrobiales (Class II), and the Methanosarcinales (Class III)
    corecore