1,998 research outputs found

    Pan-African metamorphic and magmatic rocks of the Khanka Massif, NE China: Further evidence regarding their affinity

    Get PDF
    The Khanka Massif is a crustal block located along the eastern margin of the Central Asian Orogenic Belt (CAOB) and bordered to the east by Late Jurassic-Early Cretaceous circum-Pacific accretionary complexes of the Eastern Asian continental margin. It consists of graphite-, sillimanite- and cordierite-bearing gneisses, carbonates and felsic paragneisses, in association with various orthogneisses. Metamorphic zircons from a sillimanite gneiss from the Hutou complex yield a weighted mean 206Pb/ 238U age of 490 ± 4 Ma, whereas detrital zircons from the same sample give ages from 934-610 Ma. Magmatic zircon cores in two garnet-bearing granite gneiss samples, also collected from the Hutou complex, yield weighted mean 206Pb/ 238U ages of 522 ± 5 Ma and 515 ± 8 Ma, whereas their metamorphic rims record 206Pb/ 238U ages of 510-500 Ma. These data indicate that the Hutou complex in the Khanka Massif records early Palaeozoic magmatic and metamorphic events, identical in age to those in the Mashan Complex of the Jiamusi Massif to the west. The older zircon populations in the sillimanite gneiss indicate derivation from Neoproterozoic sources, as do similar rocks in the Jiamusi Massif. These data confirm that the Khanka Massif has a close affinity with other major components of the CAOB to the west of the Dun-Mi Fault. Based on these results and previously published data, the Khanka Massif is therefore confirmed as having formed a single crustal entity with the Jiamusi (and possibly the Bureya) massif since Neoproterozoic time. Copyright © Cambridge University Press 2010.published_or_final_versio

    Local Resting Ca2+ Controls the Scale of Astroglial Ca2+ Signals

    Get PDF
    Astroglia regulate neurovascular coupling while engaging in signal exchange with neurons. The underlying cellular machinery is thought to rely on astrocytic Ca2+ signals, but what controls their amplitude and waveform is poorly understood. Here, we employ time-resolved two-photon excitation fluorescence imaging in acute hippocampal slices and in cortex in vivo to find that resting [Ca2+] predicts the scale (amplitude) and the maximum (peak) of astroglial Ca2+ elevations. We bidirectionally manipulate resting [Ca2+] by uncaging intracellular Ca2+ or Ca2+ buffers and use ratiometric imaging of a genetically encoded Ca2+ indicator to establish that alterations in resting [Ca2+] change co-directionally the peak level and anti-directionally the amplitude of local Ca2+ transients. This relationship holds for spontaneous and for induced (for instance by locomotion) Ca2+ signals. Our findings uncover a basic generic rule of Ca2+ signal formation in astrocytes, thus also associating the resting Ca2+ level with the physiological “excitability” state of astroglia

    Protein arginine methyltransferase 5 is a key regulator of the MYCN oncoprotein in neuroblastoma cells.

    Full text link
    Approximately half of poor prognosis neuroblastomas (NBs) are characterized by pathognomonic MYCN gene amplification and MYCN over-expression. Here we present data showing that short-interfering RNA mediated depletion of the protein arginine methyltransferase 5 (PRMT5) in cell-lines representative of NBs with MYCN gene amplification leads to greatly impaired growth and apoptosis. Growth suppression is not apparent in the MYCN-negative SH-SY5Y NB cell-line, or in two immortalized human fibroblast cell-lines. Immunoblotting of NB cell-lines shows that high PRMT5 expression is strongly associated with MYCN-amplification (P < 0.004, Mann-Whitney U-test) and immunohistochemical analysis of primary NBs reveals that whilst PRMT5 protein is ubiquitously expressed in the cytoplasm of most cells, MYCN-amplified tumours exhibit pronounced nuclear PRMT5 staining. PRMT5 knockdown in MYCN-overexpressing cells, including the SHEP-21N cell-line with inducible MYCN expression leads to a dramatic decrease in MYCN protein and MYCN-associated cell-death in SHEP-21N cells. Quantitative gene expression analysis and cycloheximide chase experiments suggest that PRMT5 regulates MYCN at a post-transcriptional level. Reciprocal co-immunoprecipitation experiments demonstrated that endogenous PRMT5 and MYCN interact in both SK-N-BE(2)C and NGP cell lines. By using liquid chromatography - tandem mass spectrometry (LC-MS/MS) analysis of immunoprecipitated MYCN protein, we identified several potential sites of arginine dimethylation on the MYCN protein. Together our studies implicate PRMT5 in a novel mode of MYCN post-translational regulation and suggest PRMT5 plays a major role in NB tumorigenesis. Small-molecule inhibitors of PRMT5 may therefore represent a novel therapeutic strategy for neuroblastoma and other cancers driven by the MYCN oncogene

    Wide-Scale Analysis of Human Functional Transcription Factor Binding Reveals a Strong Bias towards the Transcription Start Site

    Get PDF
    We introduce a novel method to screen the promoters of a set of genes with shared biological function, against a precompiled library of motifs, and find those motifs which are statistically over-represented in the gene set. The gene sets were obtained from the functional Gene Ontology (GO) classification; for each set and motif we optimized the sequence similarity score threshold, independently for every location window (measured with respect to the TSS), taking into account the location dependent nucleotide heterogeneity along the promoters of the target genes. We performed a high throughput analysis, searching the promoters (from 200bp downstream to 1000bp upstream the TSS), of more than 8000 human and 23,000 mouse genes, for 134 functional Gene Ontology classes and for 412 known DNA motifs. When combined with binding site and location conservation between human and mouse, the method identifies with high probability functional binding sites that regulate groups of biologically related genes. We found many location-sensitive functional binding events and showed that they clustered close to the TSS. Our method and findings were put to several experimental tests. By allowing a "flexible" threshold and combining our functional class and location specific search method with conservation between human and mouse, we are able to identify reliably functional TF binding sites. This is an essential step towards constructing regulatory networks and elucidating the design principles that govern transcriptional regulation of expression. The promoter region proximal to the TSS appears to be of central importance for regulation of transcription in human and mouse, just as it is in bacteria and yeast.Comment: 31 pages, including Supplementary Information and figure

    Health status in the TORCH study of COPD: treatment efficacy and other determinants of change

    Get PDF
    BACKGROUND: Little is known about factors that determine health status decline in clinical trials of COPD. OBJECTIVES: To examine health status changes over 3 years in the TORCH study of salmeterol+fluticasone propionate (SFC) vs. salmeterol alone, fluticasone propionate alone or placebo. METHODS: St George's Respiratory Questionnaire (SGRQ) was administered at baseline then every 6 months. MEASUREMENTS AND MAIN RESULTS: Data from 4951 patients in 28 countries were available. SFC produced significant improvements over placebo in all three SGRQ domains during the study: (Symptoms -3.6 [95% CI -4.8, -2.4], Activity -2.8 [95% CI -3.9, -1.6], Impacts -3.2 [95% CI -4.3, -2.1]) but the pattern of change over time differed between domains. SGRQ deteriorated faster in patients with Global Initiative for Chronic Obstructive Lung Disease (GOLD) stages III & IV relative to GOLD stage II (p < 0.001). There was no difference in the relationship between deterioration in SGRQ Total score and forced expiratory volume in one second (FEV1) decline (as % predicted) in men and women. Significantly faster deterioration in Total score relative to FEV1 % predicted was seen in older patients (≥ 65 years) and there was an age-related change in Total score that was independent of change in FEV1. The relationship between deterioration in FEV1 and SGRQ did not differ in different world regions, but patients in Asia-Pacific showed a large improvement in score that was unrelated to FEV1 change. CONCLUSIONS: In addition to treatment effects, health status changes in clinical trials may be influenced by demographic and disease-related factors. Deterioration in health status appears to be fastest in older persons and those with severe airflow limitation

    Towards quantum computing with single atoms and optical cavities on atom chips

    Full text link
    We report on recent developments in the integration of optical microresonators into atom chips and describe some fabrication and implementation challenges. We also review theoretical proposals for quantum computing with single atoms based on the observation of photons leaking through the cavity mirrors. The use of measurements to generate entanglement can result in simpler, more robust and scalable quantum computing architectures. Indeed, we show that quantum computing with atom-cavity systems is feasible even in the presence of relatively large spontaneous decay rates and finite photon detector efficiencies.Comment: 14 pages, 6 figure

    3-D Ultrastructure of O. tauri: Electron Cryotomography of an Entire Eukaryotic Cell

    Get PDF
    The hallmark of eukaryotic cells is their segregation of key biological functions into discrete, membrane-bound organelles. Creating accurate models of their ultrastructural complexity has been difficult in part because of the limited resolution of light microscopy and the artifact-prone nature of conventional electron microscopy. Here we explored the potential of the emerging technology electron cryotomography to produce three-dimensional images of an entire eukaryotic cell in a near-native state. Ostreococcus tauri was chosen as the specimen because as a unicellular picoplankton with just one copy of each organelle, it is the smallest known eukaryote and was therefore likely to yield the highest resolution images. Whole cells were imaged at various stages of the cell cycle, yielding 3-D reconstructions of complete chloroplasts, mitochondria, endoplasmic reticula, Golgi bodies, peroxisomes, microtubules, and putative ribosome distributions in-situ. Surprisingly, the nucleus was seen to open long before mitosis, and while one microtubule (or two in some predivisional cells) was consistently present, no mitotic spindle was ever observed, prompting speculation that a single microtubule might be sufficient to segregate multiple chromosomes

    Expression and Differential Responsiveness of Central Nervous System Glial Cell Populations to the Acute Phase Protein Serum Amyloid A

    Get PDF
    Acute-phase response is a systemic reaction to environmental/inflammatory insults and involves hepatic production of acute-phase proteins, including serum amyloid A (SAA). Extrahepatically, SAA immunoreactivity is found in axonal myelin sheaths of cortex in Alzheimer's disease and multiple sclerosis (MS), although its cellular origin is unclear. We examined the responses of cultured rat cortical astrocytes, microglia and oligodendrocyte precursor cells (OPCs) to master pro-inflammatory cytokine tumour necrosis factor (TNF)-\u3b1 and lipopolysaccaride (LPS). TNF-\u3b1 time-dependently increased Saa1 (but not Saa3) mRNA expression in purified microglia, enriched astrocytes, and OPCs (as did LPS for microglia and astrocytes). Astrocytes depleted of microglia were markedly less responsive to TNF-\u3b1 and LPS, even after re-addition of microglia. Microglia and enriched astrocytes showed complementary Saa1 expression profiles following TNF-\u3b1 or LPS challenge, being higher in microglia with TNF-\u3b1 and higher in astrocytes with LPS. Recombinant human apo-SAA stimulated production of both inflammatory mediators and its own mRNA in microglia and enriched, but not microglia-depleted astrocytes. Co-ultramicronized palmitoylethanolamide/luteolin, an established anti-inflammatory/neuroprotective agent, reduced Saa1 expression in OPCs subjected to TNF-\u3b1 treatment. These last data, together with past findings suggest that co-ultramicronized palmitoylethanolamide/luteolin may be a novel approach in the treatment of inflammatory demyelinating disorders like MS

    Extensive Copy-Number Variation of Young Genes across Stickleback Populations

    Get PDF
    MM received funding from the Max Planck innovation funds for this project. PGDF was supported by a Marie Curie European Reintegration Grant (proposal nr 270891). CE was supported by German Science Foundation grants (DFG, EI 841/4-1 and EI 841/6-1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics
    corecore