2,286 research outputs found

    Medical treatment of pediatric urolithiasis

    Get PDF
    In recent years the incidence of pediatric stone disease has increased several fold, mostly due to hypercalciuria and hypocitraturia. The goal of medical treatment is to protect the patient from formation of new stones and expansion of existing ones. The non-pharmacological means to address stone disease include high fluid intake and, frequently, modification of nutritional habits. The pharmacological treatment is based on the chemical composition of the stone and the biochemical abnormalities causing its formation; hence, chemical analysis of the stone, urine and blood is of paramount importance and should be done when the first stone is detected. This review discusses the current options of medical treatment of pediatric urolithiasis

    Effects of ocean acidification on invertebrate settlement at volcanic CO<inf>2</inf> vents

    Get PDF
    We present the first study of the effects of ocean acidification on settlement of benthic invertebrates and microfauna. Artificial collectors were placed for 1 month along pH gradients at CO2 vents off Ischia (Tyrrhenian Sea, Italy). Seventy-nine taxa were identified from six main taxonomic groups (foraminiferans, nematodes, polychaetes, molluscs, crustaceans and chaetognaths). Calcareous foraminiferans, serpulid polychaetes, gastropods and bivalves showed highly significant reductions in recruitment to the collectors as pCO2 rose from normal (336-341 ppm, pH 8.09-8.15) to high levels (886-5,148 ppm) causing acidified conditions near the vents (pH 7.08-7.79). Only the syllid polychaete Syllis prolifera had higher abundances at the most acidified station, although a wide range of polychaetes and small crustaceans was able to settle and survive under these conditions. A few taxa (Amphiglena mediterranea, Leptochelia dubia, Caprella acanthifera) were particularly abundant at stations acidified by intermediate amounts of CO2 (pH 7. 41-7.99). These results show that increased levels of CO2 can profoundly affect the settlement of a wide range of benthic organisms. © 2010 Springer-Verlag

    A prospective study of postmenopausal hormone use and ovarian cancer risk

    Get PDF
    The relationship between postmenopausal hormone use (PMH) and ovarian cancer risk is unclear, particularly for specific hormone formulations, but recent studies suggest that there is a positive association. We conducted a prospective observational study with 82 905 postmenopausal women, including 389 ovarian cancers, in the Nurses' Health Study from 1976 to 2002. Compared with never users of PMH, both current and past users of ⩾5 years had a significantly elevated risk of ovarian cancer (RR=1.41, 95% confidence interval (CI) 1.07–1.86 and relative risk (RR)=1.52, 95% CI 1.01–2.27, respectively). Examined by hormone type in continuous years, use of unopposed estrogen was associated with a significant increase in the risk of epithelial ovarian cancer (P for trend <0.001; RR for 5-year increment of use=1.25, 95% CI 1.12–1.38). Use of estrogen plus progestin (RR for 5-year increment of use=1.04, 95% CI 0.82–1.32) was not significantly associated with ovarian cancer risk. Generally, results were similar for serous tumours (RR for 5-year increment of unopposed estrogen use=1.23, 95% CI 1.07–1.40) and slightly stronger for endometrioid tumours (RR for 5-year increment of unopposed estrogen use=1.53, 95% CI 1.20–1.94). Recency of use was not significantly associated with ovarian cancer risk, but statistical power was limited here

    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family

    Get PDF
    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future

    HIVAN and medication use in chronic dialysis patients in the United States: analysis of the USRDS DMMS Wave 2 study

    Get PDF
    BACKGROUND: The use and possible effects of factors known to improve outcomes in patients with human immunodeficiency virus associated nephropathy (HIVAN), namely of angiotensin converting enzyme inhibitors (ACE) and antiretroviral therapy, has not been reported for a national sample of dialysis patients. METHODS: We conducted a historical cohort study of the United States Renal Data System (USRDS) Dialysis Morbidity and Mortality Study (DMMS) Wave 2 to identify risk factors associated with increased mortality in these patients. Data were available for 3374 patients who started dialysis and were followed until March 2000. Cox Regression analysis was used to model adjusted hazard ratios (AHR) with HIVAN as a cause of end stage renal disease (ESRD) and its impact on mortality during the study period, adjusted for potential confounders. RESULTS: Of the 3374 patients who started dialysis, 36 (1.1%) had ESRD as a result of HIVAN. Only 22 (61%) of patients with HIVAN received antiretroviral agents, and only nine patients (25%) received combination antiretroviral therapy, and only 14% received ACE inhibitors. Neither the use of multiple antiretroviral drugs (AHR, 0.62, 95% CI, 0.10, 3.86, p = 0.60), or ACE inhibitors were associated with a survival advantage. Patients with HIVAN had an increased risk of mortality (adjusted hazard ratio, 4.74, 95% Confidence Interval, 3.12, 7.32, p < 0.01) compared to patients with other causes of ESRD. CONCLUSIONS: Medications known to improve outcomes in HIV infected patients were underutilized in patients with HIVAN. Adjusted for other factors, a primary diagnosis of HIVAN was associated with increased mortality compared with other causes of ESRD

    Genetic inhibition of neurotransmission reveals role of glutamatergic input to dopamine neurons in high-effort behavior

    Get PDF
    Midbrain dopamine neurons are crucial for many behavioral and cognitive functions. As the major excitatory input, glutamatergic afferents are important for control of the activity and plasticity of dopamine neurons. However, the role of glutamatergic input as a whole onto dopamine neurons remains unclear. Here we developed a mouse line in which glutamatergic inputs onto dopamine neurons are specifically impaired, and utilized this genetic model to directly test the role of glutamatergic inputs in dopamine-related functions. We found that while motor coordination and reward learning were largely unchanged, these animals showed prominent deficits in effort-related behavioral tasks. These results provide genetic evidence that glutamatergic transmission onto dopaminergic neurons underlies incentive motivation, a willingness to exert high levels of effort to obtain reinforcers, and have important implications for understanding the normal function of the midbrain dopamine system.Fil: Hutchison, M. A.. National Institutes of Health; Estados UnidosFil: Gu, X.. National Institutes of Health; Estados UnidosFil: Adrover, Martín Federico. National Institutes of Health; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Lee, M. R.. National Institutes of Health; Estados UnidosFil: Hnasko, T. S.. University of California at San Diego; Estados UnidosFil: Alvarez, V. A.. National Institutes of Health; Estados UnidosFil: Lu, W.. National Institutes of Health; Estados Unido

    Unusually long path length for a nearly scatter-free solar particle event observed by Solar Orbiter at 0.43 au

    Get PDF
    Context: After their acceleration and release at the Sun, solar energetic particles (SEPs) are injected into the interplanetary medium and are bound to the interplanetary magnetic field (IMF) by the Lorentz force. The expansion of the IMF close to the Sun focuses the particle pitch-angle distribution, and scattering counteracts this focusing. Solar Orbiter observed an unusual solar particle event on 9 April 2022 when it was at 0.43 astronomical units (au) from the Sun. // Aims: We show that the inferred IMF along which the SEPs traveled was about three times longer than the nominal length of the Parker spiral and provide an explanation for this apparently long path. // Methods: We used velocity dispersion analysis (VDA) information to infer the spiral length along which the electrons and ions traveled and infer their solar release times and arrival direction. // Results: The path length inferred from VDA is approximately three times longer than the nominal Parker spiral. Nevertheless, the pitch-angle distribution of the particles of this event is highly anisotropic, and the electrons and ions appear to be streaming along the same IMF structures. The angular width of the streaming population is estimated to be approximately 30 degrees. The highly anisotropic ion beam was observed for more than 12 h. This may be due to the low level of fluctuations in the IMF, which in turn is very probably due to this event being inside an interplanetary coronal mass ejection The slow and small rotation in the IMF suggests a flux-rope structure. Small flux dropouts are associated with very small changes in pitch angle, which may be explained by different flux tubes connecting to different locations in the flare region. // Conclusions: The unusually long path length along which the electrons and ions have propagated virtually scatter-free together with the short-term flux dropouts offer excellent opportunities to study the transport of SEPs within interplanetary structures. The 9 April 2022 solar particle event offers an especially rich number of unique observations that can be used to limit SEP transport models

    Surface and Temporal Biosignatures

    Full text link
    Recent discoveries of potentially habitable exoplanets have ignited the prospect of spectroscopic investigations of exoplanet surfaces and atmospheres for signs of life. This chapter provides an overview of potential surface and temporal exoplanet biosignatures, reviewing Earth analogues and proposed applications based on observations and models. The vegetation red-edge (VRE) remains the most well-studied surface biosignature. Extensions of the VRE, spectral "edges" produced in part by photosynthetic or nonphotosynthetic pigments, may likewise present potential evidence of life. Polarization signatures have the capacity to discriminate between biotic and abiotic "edge" features in the face of false positives from band-gap generating material. Temporal biosignatures -- modulations in measurable quantities such as gas abundances (e.g., CO2), surface features, or emission of light (e.g., fluorescence, bioluminescence) that can be directly linked to the actions of a biosphere -- are in general less well studied than surface or gaseous biosignatures. However, remote observations of Earth's biosphere nonetheless provide proofs of concept for these techniques and are reviewed here. Surface and temporal biosignatures provide complementary information to gaseous biosignatures, and while likely more challenging to observe, would contribute information inaccessible from study of the time-averaged atmospheric composition alone.Comment: 26 pages, 9 figures, review to appear in Handbook of Exoplanets. Fixed figure conversion error
    • …
    corecore