589 research outputs found
High EMSY expression defines a BRCA‐like subgroup of high‐grade serous ovarian carcinoma with prolonged survival and hypersensitivity to platinum
Background
Approximately half of high‐grade serous ovarian carcinomas (HGSOCs) demonstrate homologous recombination repair (HR) pathway defects, resulting in a distinct clinical phenotype comprising hypersensitivity to platinum, superior clinical outcome, and greater sensitivity to poly(adenosine diphosphate‐ribose) polymerase (PARP) inhibitors. EMSY, which is known to be amplified in breast and ovarian cancers, encodes a protein reported to bind and inactivate BRCA2. Thus, EMSY overexpression may mimic BRCA2 mutation, resulting in HR deficiency. However, to our knowledge, the phenotypic consequences of EMSY overexpression in HGSOC patients has not been explored.
Methods
Here we investigate the impact of EMSY expression on clinical outcome and sensitivity to platinum‐based chemotherapy using available data from transcriptomically characterized HGSOC cohorts.
Results
High EMSY expression was associated with better clinical outcome in a cohort of 265 patients with HGSOC from Edinburgh (overall survival multivariable hazard ratio, 0.58 [95% CI, 0.38‐0.88; P = .011] and progression‐free survival multivariable hazard ratio, 0.62 [95% CI, 0.40‐0.96; P = .030]). Superior outcome also was demonstrated in the Medical Research Council ICON7 clinical trial and multiple publicly available data sets. Patients within the Edinburgh cohort who had high EMSY expression were found to demonstrate greater rates of complete response to multiple platinum‐containing chemotherapy regimens (radiological complete response rate of 44.4% vs 12.5% at second exposure; P = .035) and corresponding prolonged time to disease progression (median, 151.5 days vs 60.5 days after third platinum exposure; P = .004).
Conclusions
Patients with HGSOCs demonstrating high EMSY expression appear to experience prolonged survival and greater platinum sensitivity, reminiscent of BRCA‐mutant cases. These data are consistent with the notion that EMSY overexpression may render HGSOCs HR deficient
Broadening of Plasmonic Resonance Due to Electron Collisions with Nanoparticle Boundary: а Quantum Mechanical Consideration
We present a quantum mechanical approach to calculate broadening of plasmonic
resonances in metallic nanostructures due to collisions of electrons with the
surface of the structure. The approach is applicable if the characteristic size
of the structure is much larger than the de Broglie electron wavelength in the
metal. The approach can be used in studies of plasmonic properties of both
single nanoparticles and arrays of nanoparticles.Comment: 9 page
Expression of the Multiple Sclerosis-Associated MHC Class II Allele HLA-DRB1*1501 Is Regulated by Vitamin D
Multiple sclerosis (MS) is a complex trait in which allelic variation in the MHC class II region exerts the single strongest effect on genetic risk. Epidemiological data in MS provide strong evidence that environmental factors act at a population level to influence the unusual geographical distribution of this disease. Growing evidence implicates sunlight or vitamin D as a key environmental factor in aetiology. We hypothesised that this environmental candidate might interact with inherited factors and sought responsive regulatory elements in the MHC class II region. Sequence analysis localised a single MHC vitamin D response element (VDRE) to the promoter region of HLA-DRB1. Sequencing of this promoter in greater than 1,000 chromosomes from HLA-DRB1 homozygotes showed absolute conservation of this putative VDRE on HLA-DRB1*15 haplotypes. In contrast, there was striking variation among non–MS-associated haplotypes. Electrophoretic mobility shift assays showed specific recruitment of vitamin D receptor to the VDRE in the HLA-DRB1*15 promoter, confirmed by chromatin immunoprecipitation experiments using lymphoblastoid cells homozygous for HLA-DRB1*15. Transient transfection using a luciferase reporter assay showed a functional role for this VDRE. B cells transiently transfected with the HLA-DRB1*15 gene promoter showed increased expression on stimulation with 1,25-dihydroxyvitamin D3 (P = 0.002) that was lost both on deletion of the VDRE or with the homologous “VDRE” sequence found in non–MS-associated HLA-DRB1 haplotypes. Flow cytometric analysis showed a specific increase in the cell surface expression of HLA-DRB1 upon addition of vitamin D only in HLA-DRB1*15 bearing lymphoblastoid cells. This study further implicates vitamin D as a strong environmental candidate in MS by demonstrating direct functional interaction with the major locus determining genetic susceptibility. These findings support a connection between the main epidemiological and genetic features of this disease with major practical implications for studies of disease mechanism and prevention
Transcriptional networks in at-risk individuals identify signatures of type 1 diabetes progression.
Type 1 diabetes (T1D) is a disease of insulin deficiency that results from autoimmune destruction of pancreatic islet β cells. The exact cause of T1D remains unknown, although asymptomatic islet autoimmunity lasting from weeks to years before diagnosis raises the possibility of intervention before the onset of clinical disease. The number, type, and titer of islet autoantibodies are associated with long-term disease risk but do not cause disease, and robust early predictors of individual progression to T1D onset remain elusive. The Environmental Determinants of Diabetes in the Young (TEDDY) consortium is a prospective cohort study aiming to determine genetic and environmental interactions causing T1D. Here, we analyzed longitudinal blood transcriptomes of 2013 samples from 400 individuals in the TEDDY study before both T1D and islet autoimmunity. We identified and interpreted age-associated gene expression changes in healthy infancy and age-independent changes tracking with progression to both T1D and islet autoimmunity, beginning before other evidence of islet autoimmunity was present. We combined multivariate longitudinal data in a Bayesian joint model to predict individual risk of T1D onset and validated the association of a natural killer cell signature with progression and the model's predictive performance on an additional 356 samples from 56 individuals in the independent Type 1 Diabetes Prediction and Prevention study. Together, our results indicate that T1D is characterized by early and longitudinal changes in gene expression, informing the immunopathology of disease progression and facilitating prediction of its course.The TEDDY Study is funded by U01 DK63829, U01 DK63861, U01 DK63821, U01 DK63865, U01 DK63863, U01 DK63836, U01 DK63790, UC4 DK63829, UC4 DK63861, UC4 DK63821, UC4 DK63865, UC4 DK63863, UC4 DK63836, UC4 DK95300, UC4 DK100238, UC4 DK106955, UC4 DK112243, UC4 DK117483, and Contract No. HHSN267200700014C from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institute of Allergy and Infectious Diseases (NIAID), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institute of Environmental Health Sciences (NIEHS), Centers for Disease Control and Prevention (CDC), and JDRF. This work supported in part by the NIH/NCATS Clinical and Translational Science Awards to the University of Florida (UL1 TR000064) and the University of Colorado (UL1 TR001082). KGCS is a Lister Prize fellow and is supported by a Wellcome Trust Senior Investigator award (200871/Z/16/Z). EFM is a Wellcome-Beit prize fellow (10406/Z/14/A) supported by the Wellcome Trust and Beit Foundation (10406/Z/14/Z) and by the National Institutes for Health Research Biomedical Research Centre (Cambridge). LPX’s affiliation changed after completion of the manuscript and is now Département d'informatique et de recherche opérationnelle, Université de Montréal, Montréal, Canada and Mila, Quebec Institute for Learning Algorithms, Montréal, Canada
The epidemiology of patellar luxation in dogs attending primary-care veterinary practices in England
Lipid-soluble Vitamins A, D, and E in HIV-Infected Pregnant women in Tanzania.
There is limited published research examining lipid-soluble vitamins in human immunodeficiency virus (HIV)-infected pregnant women, particularly in resource-limited settings. This is an observational analysis of 1078 HIV-infected pregnant women enrolled in a trial of vitamin supplementation in Tanzania. Baseline data on sociodemographic and anthropometric characteristics, clinical signs and symptoms, and laboratory parameters were used to identify correlates of low plasma vitamin A (<0.7 micromol/l), vitamin D (<80 nmol/l) and vitamin E (<9.7 micromol/l) status. Binomial regression was used to estimate risk ratios and 95% confidence intervals. Approximately 35, 39 and 51% of the women had low levels of vitamins A, D and E, respectively. Severe anemia (hemoglobin <85 g/l; P<0.01), plasma vitamin E (P=0.02), selenium (P=0.01) and vitamin D (P=0.02) concentrations were significant correlates of low vitamin A status in multivariate models. Erythrocyte Sedimentation Rate (ESR) was independently related to low vitamin A status in a nonlinear manner (P=0.01). The correlates of low vitamin D status were CD8 cell count (P=0.01), high ESR (ESR >81 mm/h; P<0.01), gestational age at enrollment (nonlinear; P=0.03) and plasma vitamins A (P=0.02) and E (P=0.01). For low vitamin E status, the correlates were money spent on food per household per day (P<0.01), plasma vitamin A concentration (nonlinear; P<0.01) and a gestational age <16 weeks at enrollment (P<0.01). Low concentrations of lipid-soluble vitamins are widely prevalent among HIV-infected women in Tanzania and are correlated with other nutritional insufficiencies. Identifying HIV-infected persons at greater risk of poor nutritional status and infections may help inform design and implementation of appropriate interventions
Prevalence of Disorders Recorded in Dogs Attending Primary-Care Veterinary Practices in England
Purebred dog health is thought to be compromised by an increasing occurence of inherited diseases but inadequate prevalence data on common disorders have hampered efforts to prioritise health reforms. Analysis of primary veterinary practice clinical data has been proposed for reliable estimation of disorder prevalence in dogs. Electronic patient record (EPR) data were collected on 148,741 dogs attending 93 clinics across central and south-eastern England. Analysis in detail of a random sample of EPRs relating to 3,884 dogs from 89 clinics identified the most frequently recorded disorders as otitis externa (prevalence 10.2%, 95% CI: 9.1-11.3), periodontal disease (9.3%, 95% CI: 8.3-10.3) and anal sac impaction (7.1%, 95% CI: 6.1-8.1). Using syndromic classification, the most prevalent body location affected was the head-and-neck (32.8%, 95% CI: 30.7-34.9), the most prevalent organ system affected was the integument (36.3%, 95% CI: 33.9-38.6) and the most prevalent pathophysiologic process diagnosed was inflammation (32.1%, 95% CI: 29.8-34.3). Among the twenty most-frequently recorded disorders, purebred dogs had a significantly higher prevalence compared with crossbreds for three: otitis externa (P = 0.001), obesity (P = 0.006) and skin mass lesion (P = 0.033), and popular breeds differed significantly from each other in their prevalence for five: periodontal disease (P = 0.002), overgrown nails (P = 0.004), degenerative joint disease (P = 0.005), obesity (P = 0.001) and lipoma (P = 0.003). These results fill a crucial data gap in disorder prevalence information and assist with disorder prioritisation. The results suggest that, for maximal impact, breeding reforms should target commonly-diagnosed complex disorders that are amenable to genetic improvement and should place special focus on at-risk breeds. Future studies evaluating disorder severity and duration will augment the usefulness of the disorder prevalence information reported herein
Heat and water stress induce unique transcriptional signatures of heat-shock proteins and transcription factors in grapevine
Grapevine is an extremely important crop worldwide.
In southern Europe, post-flowering phases of the growth
cycle can occur under high temperatures, excessive light, and
drought conditions at soil and/or atmospheric level. In this
study, we subjected greenhouse grown grapevine, variety
Aragonez, to two individual abiotic stresses, water deficit stress
(WDS), and heat stress (HS). The adaptation of plants to stress
is a complex response triggered by cascades of molecular
networks involved in stress perception, signal transduction,
and the expression of specific stress-related genes and metabolites.
Approaches such as array-based transcript profiling allow
assessing the expression of thousands of genes in control
and stress tissues. Using microarrays, we analyzed the leaf
transcriptomic profile of the grapevine plants. Photosynthesis
measurements verified that the plants were significantly affected
by the stresses applied. Leaf gene expression was obtained
using a high-throughput transcriptomic grapevine array, the
23K custom-made Affymetrix Vitis GeneChip. We identified
1,594 genes as differentially expressed between control and
treatments and grouped them into ten major functional categories
using MapMan software. The transcriptome of Aragonez
was more significantly affected by HS when compared with
WDS. The number of genes coding for heat-shock proteins and
transcription factors expressed solely in response to HS suggesting
their expression as unique signatures of HS. However, a cross-talk between the response pathways to both stresses was
observed at the level of AP2/ERF transcription factors
- …