908 research outputs found

    The association of HLA-DQB1, -DQA1 and -DPB1 alleles with anti- glomerular basement membrane (GBM) disease in Chinese patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human leukocyte antigen (HLA) alleles are associated with many autoimmune diseases, including anti-glomerular basement membrane (GBM) disease. In our previous study, it was demonstrated that HLA-DRB1*1501 was strongly associated with anti-GBM disease in Chinese. However, the association of anti-GBM disease and other HLA class II genes, including HLA-DQB1, -DQA1,-DPB1 alleles, has rarely been investigated in Asian, especially Chinese patients. The present study further analyzed the association between anti-GBM disease and HLA-DQB1, -DQA1, and -DPB1 genes. Apart from this, we tried to locate the potential risk amino acid residues of anti-GBM disease.</p> <p>Methods</p> <p>This study included 44 Chinese patients with anti-GBM disease and 200 healthy controls. The clinical and pathological data of the patients were collected and analyzed. Typing of HLA-DQB1, -DQA1 and -DPB1 alleles were performed by bi-directional sequencing of exon 2 using the SeCoreTM Sequencing Kits.</p> <p>Results</p> <p>Compared with normal controls, the prevalence of HLA-DPB1*0401 was significantly lower in patients with anti-GBM disease (3/88 vs. 74/400, p = 4.4 × 10<sup>-4</sup>, pc = 0.039). Comparing with normal controls, the combination of presence of DRB1*1501 and absence of DPB1*0401 was significantly prominent among anti-GBM patients (p = 2.0 × 10<sup>-12</sup>, pc = 1.7 × 10<sup>-10</sup>).</p> <p>Conclusions</p> <p>HLA-DPB1*0401 might be a protective allele to anti-GBM disease in Chinese patients. The combined presence of DRB1*1501 and absence of DPB1*0401 might have an even higher risk to anti-GBM disease than HLA-DRB1*1501 alone.</p

    Three-dimensional visualization software assists learning in students with diverse spatial intelligence in medical education

    Get PDF
    This study evaluated effect of mental rotation (MR) training on learning outcomes and explored effectiveness of teaching via three-dimensional (3D) software among medical students with diverse spatial intelligence. Data from n = 67 student volunteers were included. A preliminary test was conducted to obtain baseline level of MR competency and was utilized to assign participants to two experimental conditions, i.e., trained group (n = 25) and untrained group (n = 42). Data on the effectiveness of training were collected to measure participants\u27 speed and accuracy in performing various MR activities. Six weeks later, a large class format (LCF) session was conducted for all students using 3D software. The usefulness of technology-assisted learning at the LCF was evaluated via a pre- and post-test. Students\u27 feedback regarding MR training and use of 3D software was acquired through questionnaires. MR scores of the trainees improved from 25.9±4.6 points to 28.1±4.4 (P = 0.011) while time taken to complete the tasks reduced from 20.9±3.9 to 12.2±4.4 minutes. Males scored higher than females in all components (P = 0.016). Further, higher pre- and post-test scores were observed in trained (9.0±1.9 and 12.3±1.6) versus untrained group (7.8±1.8; 10.8±1.8). Although mixed-design analysis of variance suggested significant difference in their test scores (P \u3c 0.001), both groups reported similar trend in improvement by means of 3D software (P = 0.54). Ninety-seven percent of students reported technology-assisted learning as an effective means of instruction and found use of 3D software superior to plastic models. Software based on 3D technologies could be adopted as an effective teaching pedagogy to support learning across students with diverse levels of mental rotation abilities

    Field Emission Properties and Fabrication of CdS Nanotube Arrays

    Get PDF
    A large area arrays (ca. 40 cm2) of CdS nanotube on silicon wafer are successfully fabricated by the method of layer-by-layer deposition cycle. The wall thicknesses of CdS nanotubes are tuned by controlling the times of layer-by-layer deposition cycle. The field emission (FE) properties of CdS nanotube arrays are investigated for the first time. The arrays of CdS nanotube with thin wall exhibit better FE properties, a lower turn-on field, and a higher field enhancement factor than that of the arrays of CdS nanotube with thick wall, for which the ratio of length to the wall thickness of the CdS nanotubes have played an important role. With increasing the wall thickness of CdS nanotube, the enhancement factorβdecreases and the values of turn-on field and threshold field increase

    Head Position in Stroke Trial (HeadPoST)- sitting-up vs lying-flat positioning of patients with acute stroke: study protocol for a cluster randomised controlled trial

    Get PDF
    Background Positioning a patient lying-flat in the acute phase of ischaemic stroke may improve recovery and reduce disability, but such a possibility has not been formally tested in a randomised trial. We therefore initiated the Head Position in Stroke Trial (HeadPoST) to determine the effects of lying-flat (0°) compared with sitting-up (≥30°) head positioning in the first 24 hours of hospital admission for patients with acute stroke. Methods/Design We plan to conduct an international, cluster randomised, crossover, open, blinded outcome-assessed clinical trial involving 140 study hospitals (clusters) with established acute stroke care programs. Each hospital will be randomly assigned to sequential policies of lying-flat (0°) or sitting-up (≥30°) head position as a ‘business as usual’ stroke care policy during the first 24 hours of admittance. Each hospital is required to recruit 60 consecutive patients with acute ischaemic stroke (AIS), and all patients with acute intracerebral haemorrhage (ICH) (an estimated average of 10), in the first randomised head position policy before crossing over to the second head position policy with a similar recruitment target. After collection of in-hospital clinical and management data and 7-day outcomes, central trained blinded assessors will conduct a telephone disability assessment with the modified Rankin Scale at 90 days. The primary outcome for analysis is a shift (defined as improvement) in death or disability on this scale. For a cluster size of 60 patients with AIS per intervention and with various assumptions including an intracluster correlation coefficient of 0.03, a sample size of 16,800 patients at 140 centres will provide 90 % power (α 0.05) to detect at least a 16 % relative improvement (shift) in an ordinal logistic regression analysis of the primary outcome. The treatment effect will also be assessed in all patients with ICH who are recruited during each treatment study period. Discussion HeadPoST is a large international clinical trial in which we will rigorously evaluate the effects of different head positioning in patients with acute stroke. Trial registration ClinicalTrials.gov identifier: NCT02162017 (date of registration: 27 April 2014); ANZCTR identifier: ACTRN12614000483651 (date of registration: 9 May 2014). Protocol version and date: version 2.2, 19 June 2014

    The Disequilibrium of Nucleosomes Distribution along Chromosomes Plays a Functional and Evolutionarily Role in Regulating Gene Expression

    Get PDF
    To further understand the relationship between nucleosome-space occupancy (NO) and global transcriptional activity in mammals, we acquired a set of genome-wide nucleosome distribution and transcriptome data from the mouse cerebrum and testis based on ChIP (H3)-seq and RNA-seq, respectively. We identified a nearly consistent NO patterns among three mouse tissues—cerebrum, testis, and ESCs—and found, through clustering analysis for transcriptional activation, that the NO variations among chromosomes are closely associated with distinct expression levels between house-keeping (HK) genes and tissue-specific (TS) genes. Both TS and HK genes form clusters albeit the obvious majority. This feature implies that NO patterns, i.e. nucleosome binding and clustering, are coupled with gene clustering that may be functionally and evolutionarily conserved in regulating gene expression among different cell types

    2R and remodeling of vertebrate signal transduction engine

    Get PDF
    <p>Abstract</p> <p><b>Background</b></p> <p>Whole genome duplication (WGD) is a special case of gene duplication, observed rarely in animals, whereby all genes duplicate simultaneously through polyploidisation. Two rounds of WGD (2R-WGD) occurred at the base of vertebrates, giving rise to an enormous wave of genetic novelty, but a systematic analysis of functional consequences of this event has not yet been performed.</p> <p><b>Results</b></p> <p>We show that 2R-WGD affected an overwhelming majority (74%) of signalling genes, in particular developmental pathways involving receptor tyrosine kinases, Wnt and transforming growth factor-β ligands, G protein-coupled receptors and the apoptosis pathway. 2R-retained genes, in contrast to tandem duplicates, were enriched in protein interaction domains and multifunctional signalling modules of Ras and mitogen-activated protein kinase cascades. 2R-WGD had a fundamental impact on the cell-cycle machinery, redefined molecular building blocks of the neuronal synapse, and was formative for vertebrate brains. We investigated 2R-associated nodes in the context of the human signalling network, as well as in an inferred ancestral pre-2R (AP2R) network, and found that hubs (particularly involving negative regulation) were preferentially retained, with high connectivity driving retention. Finally, microarrays and proteomics demonstrated a trend for gradual paralog expression divergence independent of the duplication mechanism, but inferred ancestral expression states suggested preferential subfunctionalisation among 2R-ohnologs (2ROs).</p> <p><b>Conclusions</b></p> <p>The 2R event left an indelible imprint on vertebrate signalling and the cell cycle. We show that 2R-WGD preferentially retained genes are associated with higher organismal complexity (for example, locomotion, nervous system, morphogenesis), while genes associated with basic cellular functions (for example, translation, replication, splicing, recombination; with the notable exception of cell cycle) tended to be excluded. 2R-WGD set the stage for the emergence of key vertebrate functional novelties (such as complex brains, circulatory system, heart, bone, cartilage, musculature and adipose tissue). A full explanation of the impact of 2R on evolution, function and the flow of information in vertebrate signalling networks is likely to have practical consequences for regenerative medicine, stem cell therapies and cancer treatment.</p

    Therapeutic targeting of Krüppel-like factor 4 abrogates microglial activation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroinflammation occurs as a result of microglial activation in response to invading micro-organisms or other inflammatory stimuli within the central nervous system. According to our earlier findings, Krüppel-like factor 4 (Klf4), a zinc finger transcription factor, is involved in microglial activation and subsequent release of proinflammatory cytokines, tumor necrosis factor alpha, macrophage chemoattractant protein-1 and interleukin-6 as well as proinflammatory enzymes, inducible nitric oxide synthase and cyclooxygenase-2 in lipopolysaccharide-treated microglial cells. Our current study focuses on finding the molecular mechanism of the anti-inflammatory activities of honokiol in lipopolysaccharide-treated microglia with emphasis on the regulation of Klf4.</p> <p>Methods</p> <p>For <it>in vitro </it>studies, mouse microglial BV-2 cell lines as well as primary microglia were treated with 500 ng/mL lipopolysaccharide as well as 1 μM and 10 μM of honokiol. We cloned full-length Klf4 cDNA in pcDNA3.1 expression vector and transfected BV-2 cells with this construct using lipofectamine for overexpression studies. For <it>in vivo </it>studies, brain tissues were isolated from BALB/c mice treated with 5 mg/kg body weight of lipopolysaccharide either with or without 2.5 or 5 mg/kg body weight of honokiol. Expression of Klf4, cyclooxygenase-2, inducible nitric oxide synthase and phospho-nuclear factor-kappa B was measured using immunoblotting. We also measured the levels of cytokines, reactive oxygen species and nitric oxide in different conditions.</p> <p>Results</p> <p>Our findings suggest that honokiol can substantially downregulate the production of proinflammatory cytokines and inflammatory enzymes in lipopolysaccharide-stimulated microglia. In addition, honokiol downregulates lipopolysaccharide-induced upregulation of both Klf4 and phospho-nuclear factor-kappa B in these cells. We also found that overexpression of Klf4 in BV-2 cells suppresses the anti-inflammatory action of honokiol.</p> <p>Conclusions</p> <p>Honokiol potentially reduces inflammation in activated microglia in a Klf4-dependent manner.</p

    Preferentially Quantized Linker DNA Lengths in Saccharomyces cerevisiae

    Get PDF
    The exact lengths of linker DNAs connecting adjacent nucleosomes specify the intrinsic three-dimensional structures of eukaryotic chromatin fibers. Some studies suggest that linker DNA lengths preferentially occur at certain quantized values, differing one from another by integral multiples of the DNA helical repeat, ∼10 bp; however, studies in the literature are inconsistent. Here, we investigate linker DNA length distributions in the yeast Saccharomyces cerevisiae genome, using two novel methods: a Fourier analysis of genomic dinucleotide periodicities adjacent to experimentally mapped nucleosomes and a duration hidden Markov model applied to experimentally defined dinucleosomes. Both methods reveal that linker DNA lengths in yeast are preferentially periodic at the DNA helical repeat (∼10 bp), obeying the forms 10n+5 bp (integer n). This 10 bp periodicity implies an ordered superhelical intrinsic structure for the average chromatin fiber in yeast
    corecore