3,087 research outputs found

    Gold nanorod reshaping in vitro and in vivo using a continuous wave laser.

    Get PDF
    Gold nanorods (GNRs) are increasingly being investigated for cancer theranostics as they possess features which lend themselves in equal measures as contrast agents and catalysts for photothermal therapy. Their optical absorption spectral peak wavelength is determined by their size and shape. Photothermal therapy using GNRs is typically established using near infrared light as this allows sufficient penetration into the tumour matrix. Continuous wave (CW) lasers are the most commonly applied source of near infrared irradiation on GNRs for tumour photothermal therapy. It is perceived that large tumours may require fractionated or prolonged irradiation. However the true efficacy of repeated or protracted CW irradiation on tumour sites using the original sample of GNRs remains unclear. In this study spectroscopy and transmission electron microscopy are used to demonstrate that GNRs reshape both in vitro and in vivo after CW irradiation, which reduces their absorption efficiency. These changes were sustained throughout and beyond the initial period of irradiation, resulting from a spectral blue-shift and a considerable diminution in the absorption peak of GNRs. Solid subcutaneous tumours in immunodeficient BALB/c mice were subjected to GNRs and analysed with electron microscopy pre- and post-CW laser irradiation. This phenomenon of thermally induced GNR reshaping can occur at relatively low bulk temperatures, well below the bulk melting point of gold. Photoacoustic monitoring of GNR reshaping is also evaluated as a potential clinical aid to determine GNR absorption and reshaping during photothermal therapy. Aggregation of particles was coincidentally observed following CW irradiation, which would further diminish the subsequent optical absorption capacity of irradiated GNRs. It is thus established that sequential or prolonged applications of CW laser will not confer any additional photothermal effect on tumours due to significant attenuations in the peak optical absorption properties of GNRs following primary laser irradiation

    Prolonged Fasting Reduces IGF-1/PKA to Promote Hematopoietic-Stem-Cell-Based Regeneration and Reverse Immunosuppression

    Get PDF
    Immune system defects are at the center of aging and a range of diseases. Here, we show that prolonged fasting reduces circulating IGF-1 levels and PKA activity in various cell populations, leading to signal transduction changes in long-term hematopoietic stem cells (LT-HSCs) and niche cells that promote stress resistance, self-renewal, and lineage-balanced regeneration. Multiple cycles of fasting abated the immunosuppression and mortality caused by chemotherapy and reversed age-dependent myeloid-bias in mice, in agreement with preliminary data on the protection of lymphocytes from chemotoxicity in fasting patients. The proregenerative effects of fasting on stem cells were recapitulated by deficiencies in either IGF-1 or PKA and blunted by exogenous IGF-1. These findings link the reduced levels of IGF-1 caused by fasting to PKA signaling and establish their crucial role in regulating hematopoietic stem cell protection, self-renewal, and regeneration

    Network Physiology reveals relations between network topology and physiological function

    Full text link
    The human organism is an integrated network where complex physiologic systems, each with its own regulatory mechanisms, continuously interact, and where failure of one system can trigger a breakdown of the entire network. Identifying and quantifying dynamical networks of diverse systems with different types of interactions is a challenge. Here, we develop a framework to probe interactions among diverse systems, and we identify a physiologic network. We find that each physiologic state is characterized by a specific network structure, demonstrating a robust interplay between network topology and function. Across physiologic states the network undergoes topological transitions associated with fast reorganization of physiologic interactions on time scales of a few minutes, indicating high network flexibility in response to perturbations. The proposed system-wide integrative approach may facilitate the development of a new field, Network Physiology.Comment: 12 pages, 9 figure

    A novel long non-coding natural antisense RNA is a negative regulator of Nos1 gene expression

    Get PDF
    Long non-coding natural antisense transcripts (NATs) are widespread in eukaryotic species. Although recent studies indicate that long NATs are engaged in the regulation of gene expression, the precise functional roles of the vast majority of them are unknown. Here we report that a long NAT (Mm-antiNos1 RNA) complementary to mRNA encoding the neuronal isoform of nitric oxide synthase (Nos1) is expressed in the mouse brain and is transcribed from the non-template strand of the Nos1 locus. Nos1 produces nitric oxide (NO), a major signaling molecule in the CNS implicated in many important functions including neuronal differentiation and memory formation. We show that the newly discovered NAT negatively regulates Nos1 gene expression. Moreover, our quantitative studies of the temporal expression profiles of Mm-antiNos1 RNA in the mouse brain during embryonic development and postnatal life indicate that it may be involved in the regulation of NO-dependent neurogenesis

    A novel class of microRNA-recognition elements that function only within open reading frames.

    Get PDF
    MicroRNAs (miRNAs) are well known to target 3' untranslated regions (3' UTRs) in mRNAs, thereby silencing gene expression at the post-transcriptional level. Multiple reports have also indicated the ability of miRNAs to target protein-coding sequences (CDS); however, miRNAs have been generally believed to function through similar mechanisms regardless of the locations of their sites of action. Here, we report a class of miRNA-recognition elements (MREs) that function exclusively in CDS regions. Through functional and mechanistic characterization of these 'unusual' MREs, we demonstrate that CDS-targeted miRNAs require extensive base-pairing at the 3' side rather than the 5' seed; cause gene silencing in an Argonaute-dependent but GW182-independent manner; and repress translation by inducing transient ribosome stalling instead of mRNA destabilization. These findings reveal distinct mechanisms and functional consequences of miRNAs that target CDS versus the 3' UTR and suggest that CDS-targeted miRNAs may use a translational quality-control-related mechanism to regulate translation in mammalian cells

    Global Networks of Trade and Bits

    Get PDF
    Considerable efforts have been made in recent years to produce detailed topologies of the Internet. Although Internet topology data have been brought to the attention of a wide and somewhat diverse audience of scholars, so far they have been overlooked by economists. In this paper, we suggest that such data could be effectively treated as a proxy to characterize the size of the "digital economy" at country level and outsourcing: thus, we analyse the topological structure of the network of trade in digital services (trade in bits) and compare it with that of the more traditional flow of manufactured goods across countries. To perform meaningful comparisons across networks with different characteristics, we define a stochastic benchmark for the number of connections among each country-pair, based on hypergeometric distribution. Original data are thus filtered by means of different thresholds, so that we only focus on the strongest links, i.e., statistically significant links. We find that trade in bits displays a sparser and less hierarchical network structure, which is more similar to trade in high-skill manufactured goods than total trade. Lastly, distance plays a more prominent role in shaping the network of international trade in physical goods than trade in digital services.Comment: 25 pages, 6 figure

    Intranasal Immunization with an Archaeal Lipid Mucosal Vaccine Adjuvant and Delivery Formulation Protects against a Respiratory Pathogen Challenge

    Get PDF
    Archaeal lipid mucosal vaccine adjuvant and delivery (AMVAD) is a safe mucosal adjuvant that elicits long lasting and memory boostable mucosal and systemic immune responses to model antigens such as ovalbumin. In this study, we evaluated the potential of the AMVAD system for eliciting protective immunity against mucosal bacterial infections, using a mouse model of intranasal Francisella tularensis LVS (LVS) challenge. Intranasal immunization of mice with cell free extract of LVS (LVSCE) adjuvanted with the AMVAD system (LVSCE/AMVAD) induced F. tularensis-specific antibody responses in sera and bronchoalveolar lavage fluids, as well as antigen-specific splenocyte proliferation and IL-17 production. More importantly, the AMVAD vaccine partially protected the mice against a lethal intranasal challenge with LVS. Compared to LVSCE immunized and naĂŻve mice, the LVSCE/AMVAD immunized mice showed substantial to significant reduction in pathogen burdens in the lungs and spleens, reduced serum and pulmonary levels of proinflammatory cytokines/chemokines, and longer mean time to death as well as significantly higher survival rates (p<0.05). These results suggest that the AMVAD system is a promising mucosal adjuvant and vaccine delivery technology, and should be explored further for its applications in combating mucosal infectious diseases
    • …
    corecore