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SUMMARY

Immune system defects are at the center of aging
and a range of diseases. Here, we show that pro-
longed fasting reduces circulating IGF-1 levels and
PKA activity in various cell populations, leading to
signal transduction changes in long-term hemato-
poietic stem cells (LT-HSCs) and niche cells that
promote stress resistance, self-renewal, and line-
age-balanced regeneration. Multiple cycles of fast-
ing abated the immunosuppression and mortality
caused by chemotherapy and reversed age-depen-
dent myeloid-bias in mice, in agreement with prelim-
inary data on the protection of lymphocytes from
chemotoxicity in fasting patients. The proregenera-
tive effects of fasting on stem cells were recapitu-
lated by deficiencies in either IGF-1 or PKA and
blunted by exogenous IGF-1. These findings link
the reduced levels of IGF-1 caused by fasting to
PKA signaling and establish their crucial role in regu-
lating hematopoietic stem cell protection, self-
renewal, and regeneration.

INTRODUCTION

Prolonged fasting (PF) lasting 48–120 hr reduces progrowth

signaling and activates pathways that enhance cellular resis-

tance to toxins in mice and humans (Fontana et al., 2010; Gue-

vara-Aguirre et al., 2011; Holzenberger et al., 2003; Lee and

Longo, 2011; Longo et al., 1997). The physiological changes

caused by PF are much more pronounced than those caused

by calorie restriction or fasting lasting 24 hours or less in part

because of the requirement to fully switch to a fat- and ketone
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bodies-based catabolism after glycogen reserves are depleted

during PF (Longo and Mattson, 2014). Studies in mice indicate

that PF can protect them from chemotoxicity by reducing circu-

lating insulin-like growth factor-1 (IGF-1) (Lee et al., 2010; Raffa-

ghello et al., 2008). A preliminary case series study also indicates

thatPFhas thepotential to ameliorate several side effects caused

by chemotherapy in humans (Safdie et al., 2009). One of the side

effects, myelosuppression, is often dose limiting in chemo-

therapy treatment, in part because damage to adult stem/pro-

genitor cells impairs tissue repair and regeneration (Kofman

et al., 2012; Mackall et al., 1994; van Tilburg et al., 2011; Williams

et al., 2004). Despite the rising interest in nutrient-dependent

changes in stem cell populations, little is known about how acute

or periodic dietary interventions affect the hematopoietic system.

Hematopoietic stem and progenitor cells (HSPCs) residing in

the adult bone marrow (BM) are part of the Lin�Sca-1+c-Kit+

(LSK) population of cells, which include the self-renewing

long-term and short-term hematopoietic stem cells (LSK-

CD48�CD150+, LT-HSC, and LSK-CD48�CD150�, ST-HSC)

and the multipotent progenitors (LSKCD48+, multipotent pro-

genitor [MPP]) (Figure S1 available online) (Challen et al., 2009;

Rathinam et al., 2011). Together, these cells are responsible

for adult hematopoietic regeneration. In the heterogeneous he-

matopoietic stem cells (HSCs), several subtypes are identified as

lymphoid- (Ly-HSCs), balanced HSC (Bala-HSC), and myeloid-

HSCs (My-HSCs) according to their distinct mature blood cell

outputs (Figure S1) (Benz et al., 2012; Challen et al., 2010;

Muller-Sieburg et al., 2004). In both mice and humans, these

HSC subtypes modulate hematopoietic lineage potential and

play an important role in lineage-homeostasis during aging

(Beerman et al., 2010; Challen et al., 2010; Cho et al., 2008;

Pang et al., 2011). Here, we studied the role of multiple PF cycles

on chemotherapy-induced and age-dependent immunosup-

pression and investigated how PF affects HSC self-renewal,

the Ly-, My-, and Bala-HSC subtypes aswell as their hematopoi-

etic reconstitution outcomes.
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RESULTS

Cycles of Prolonged Fasting Reduce Damage in Bone
Marrow Stem and Progenitor Cells and Protect Mice
against Chemotoxicity
Chemotherapy drugs cause immunosuppression by inducing

DNA damage and cell death in both peripheral blood (PB) and

bone marrow (BM), which often results in the long-term impair-

ment of hematopoiesis (Bedford et al., 1984; Yahata et al.,

2011). To test whether PFmay protect the hematopoietic system

against immunosuppressive toxicity, mice were fasted or fed an

ad libitum diet (AL) and then challenged with cyclophosphamide

(CP) for multiple cycles (Figure 1A) (Adams et al., 2007). In agree-

ment with our previous results with etoposide and doxorubicin,

weobservedamajorprotectiveeffect of cyclesof 48hrPFagainst

CP-induced mortality (Figures 1B and S1A) (Raffaghello et al.,

2008). The PF cycles also led to a decrease in the DNA damage

caused by CP in leukocytes and BM cells (Figures 1C and S1B).

To determine whether PF can protect from chemotherapy-

induced toxicity, we collected BM cells at the end of six cycles

of CP or PF + CP treatments and measured apoptosis. Given

that the HSPCs represent a minor fraction of the total BM, we

further examined apoptosis in the subpopulations of these cells

(i.e., LT-HSCs,ST-HSCs, andMPPs)byperformingTUNELassay.

The results indicate thatwithout affectingBMcellularity, PFdimin-

ished CP-induced apoptosis in HSPCs (p < 0.05, t test), particu-

larly in ST-HSCs and MPPs (Figures 1D, S1C, and S1D). The

PF-induced protection against CP-induced apoptosis was also

confirmed by Annexin V binding assay for HSPCs (Figure S1E).

Prolonged Fasting Cycles Promote Lineage-Balanced
Hematopoietic Regeneration
To assess whether the protection of HSPCs improved the

hematopoietic recovery,wecompared thehematological profiles

of CP and PF + CP mice at baseline (before CP treatments, after

PF), at nadir (2–4days afterCP) andduring the recoveryphase (8–

10 days after CP) for each cycle of chemotherapy. Multicycle CP

treatments resulted in a major decline in white blood cell (WBC)

counts (Figure 1E). In the control group,WBCsuppression, espe-

cially thenumberof lymphocytes, persisted formore than70days

(six cycles) (Figure 1E). PF reducedWBCcounts independently of

chemotherapy and did not prevent the CP-induced decrease in

the number of WBCs (Figure 1E, time 0). However, the beneficial

effect of PF was evident starting on cycle 4 (day 39) followed by

the return of lymphocytes to normal levels after the fifth cycle

(day 56) (Figure 1E). At the end of six cycles of treatment, mice

in the PF group also showed normal or close to normal levels of

lymphoid cells and normal ratios of lymphoid and myeloid cells

(L/M) (Figure 1E, right panel). This recovery was observed at

similar time points in three independent experiments (n = 20).

To begin to determine whether PF cycles can potentially pro-

mote a similar effect in humans, we also analyzed the hemato-

logical profiles of cancer patients from a phase I clinical trial for

the feasibility and safety of a 24–72 hr PF period in combination

with chemotherapy. Although three different platinum-based

drug combinations were used (Table S1), the results from a

phase I clinical trial indicate that 72 but not 24 hr of PF in combi-

nation with chemotherapy were associated with normal lympho-

cyte counts and maintenance of a normal lineage balance in
WBCs (Figure 1F). These encouraging preliminary results will

need to be expanded and confirmed in the ongoing phase II ran-

domized phase of the clinical trial.

In agreement with the effect of PF on the recovery in WBC

numbers and improvement in lymphoid/myeloid ratio, results

of fluorescence-activated cell sorting (FACS) analyses for stem

cell populations indicated an improved preservation of LT-

HSCs and ST-HSCs and the enhanced resistance to the myeloid

bias in the PF group after six cycles of CP treatment in mice (Fig-

ures 1G and 1H).

To assess whether the increased HSCs in BM from PF + CP

mice can enhance hematopoietic regeneration, we collected

BM cells from the CP- or PF + CP-treated mice and transplanted

the same number of cells into the immunocompromised (irradi-

ated) recipient mice. Results of this competitive repopulation

assay indicate that, compared to the control group fed ad libi-

tum, the BM cells from mice exposed to six cycles of CP treat-

ment preceded by PF have higher regeneration capacity leading

to efficient blood reconstitution with normal lymphoid/myeloid

ratio (L/M), as evident from the improved engraftment in the

blood and BM (Figures 1I, S1G, and S1H).

Prolonged Fasting Cycles Regulate Stem Cells
Independently of Chemotherapy and Help Reverse
Immunosenescence
Wetestedwhether thecyclesofPFalonecouldalsostimulateHSC

self-renewal. Results using bromodeoxyuridine (BrdU) incorpora-

tion assays indicated an approximately 6-fold increase of newly

generated (BrdU+) HSPCs (i.e., LT-HSC, ST-HSC, and MPP) in

PF mice, which represents 93.7% of the total increase in HSPCs

after PF cycles (Figure 2A). We found that the increase in LSK

cell number is due mainly to an increase in LT-HSCs and ST-

HSCs (Figure 2B). By contrast, the number of total BM cells and

that of progenitors (i.e., MPP, multipotent progenitors; CLP, com-

mon lymphoid progenitors; CMP, common myeloid progenitor)

was not increased by PF, and, in fact, the number of CMP was

slightly decreased during PF (Figures 2C and S2A).

Results fromcell-cycle analyses indicate thatPFalone induced

a major increase of S/G2/M phase LT-HSCs, ST-HSCs, and

MPPs (Figure 2D). The significant induction in cell-cycle entry

could explain at least part of the PF-induced increase in HSCs.

In addition to theKi67/Hoechst 33342 staining for cell-cycle anal-

ysis, the PF-induced self-renewal proliferation was confirmed by

analysis using Pyronin Y/Hoechst 33342 staining (Figure S2B).

On the other hand, results from the TUNEL assay indicate that

apoptosis was barely detectable in any subpopulation of HSPCs

from either AL-fed or PF mice when no chemotherapy treatment

was applied. Apoptosis analysis using Annexin V and 7AAD indi-

cate similar results (Figure S2C). Although PF alone reduces the

apoptosis rate in ST-HSCs significantly, the small reduction

(from 1.57% to 0.72%) in apoptosis/cellular death could only

contribute to a very small portion of the PF-induced increase in

HSCs and MPP (Figure 2E). However, because studies of HSCs

have shown that induction of proliferation may sometimes be

accompanied by an increase of apoptosis (Nakada et al., 2010;

Tothova et al., 2007), it is important to note that this was not

observed in PF-induced self-renewal proliferation.

Besides the increase in the number of HSCs and MPP,

we also observed a PF-dependent alteration of lymphoid-,
Cell Stem Cell 14, 810–823, June 5, 2014 ª2014 Elsevier Inc. 811



Figure 1. Prolonged Fasting Cycles Protect the Hematopoietic System and Reverse Chemotherapy-Induced Hematopoietic Suppression

(A) Diagrammatic representation of the experimental procedure to analyze the effects of prolonged fasting (PF, 48 hr) during six cycles of cyclophosphamide

chemotherapy (CP, 200 mg/kg, i.p.).

(legend continued on next page)
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myeloid-biased, and balanced-HSCs ratio (Figures 2F, S2D, and

S2E).Whereasmost HSCs from youngmice are balanced in lym-

phopoiesis and myelopoiesis, the majority of HSCs from elderly

mice are myeloid biased (Beerman et al., 2010; Challen et al.,

2010; Cho et al., 2008; Dykstra et al., 2007; Morita et al., 2010;

Muller-Sieburg et al., 2004; Pang et al., 2011). We therefore

investigated if PF cycles can correct this bias in aged mice.

Results from 18-month-old mice indicate that eight cycles of

PF could reverse the age-dependent myeloid bias in HSC

subtypes and reverse the effect of aging on WBC number in

whole blood (Figures 2F and 2G), similar to the changes

observed in mice and possibly patients undergoing PF in com-

bination with chemotherapy (Figures 1E, 1F, and 1H). Taken

together, these results suggest that PF cycles can also stimulate

the HSCs in a chemotherapy-independent manner, which leads

to a lineage-balanced hematopoietic regeneration.

Mimicking the Effects of Prolonged Fasting by
Deficiency in GHR/IGF-1 Signaling Promotes
Hematopoietic Recovery
Wepreviouslyshowed thatPF reducescirculating IGF-1 levelsand

that IGF-I deficiency is sufficient to protect mice against chemo-

therapy toxicity (Lee et al., 2010). To determine whether the

improved hematopoietic regeneration caused by PF in mice can

be replicated by IGF-1 deficiency, we studied the hematopoietic

system in growth hormone receptor knockout (GHRKO) mice,

which have very low circulating and BM IGF-1 levels (Al-Regaiey

et al., 2005) (Figures 3A and S3A; Table S2). We found that CP-

induced DNA damage measured by the comet assay in PB and

BM cells of GHRKO mice was significantly reduced compared to

that in cells from wild-type littermates (Figure 3B). Similar to what

was observed in mice undergoing pre-chemo PF cycles, ST-

HSCs of the GHRKO mice were protected from CP-induced

apoptosis (Figure 3C). Also, the number of HSCs (i.e., LT-HSCs

and ST-HSCs) preserved in the BM of GHRKO mice was higher

than that in the wild-type littermates (Figure 3D). An improvement

in hematopoietic recovery analogous to that caused by PF was

also observed in GHRKO mice (Figure 3E).

We found that IGF-1 deficiency also caused the protective

effects and the regenerative effects independently of chemotox-

icity. Unlike PF mice, GHRKO mice did not have higher levels of
(B) Survival curve with vertical dashed lines indicating the prechemo fasting peri

(C) DNA damage measurement (olive tail moment) in bone marrow (BM) cells (da

(D) Apoptosis measurement (TUNEL assay) in HSCs and MPP (day 81, sixth rec

(E) Hematological profile of mice. Total white blood cell (WBC), lymphocyte co

(200 mg/kg, i.p.). Each point represents the mean ± SEM; horizontal dashed lines

CP versus PF + CP during the recovery phase, n = 12 (six male and six female); L/M

number of myeloid cells (i.e., granulocytes and monocytes). See also Figures S1

(F) Hematological profile of human subjects. Lymphocyte counts and lymphoid/m

based doublet chemotherapy in combination with either 24 or 72 hr (48 before an

chemo) and eighth day after each chemotherapy cycle; each point represents t

rentheses.

(G) FACS analysis of hematopoietic stem and progenitor cells (day 84, end of six

(H) Proportion of the lymphoid-biased (Ly-HSC), balanced (Bala-HSC), and of th

lower side population of LSK (lower-SPLSK) for My-HSC, middle-SPLSK for Bala-HS

SP population in the upper panels. *p < 0.05, one-way ANOVA comparing to AL

(I) BM cells collected frommice treated with either CP or PF +CPwere transplante

BM was determined 16 weeks after primary BM transplantation. The ratio of lym

For (G) and (I), n = 6–10 per group, *p < 0.05, **p < 0.01, t test comparing the PF

treatment. Error bars represent SEM.
total HSPCs (Figure S3B). However, similarly to what we

observed after PF cycles, the levels of HSCs (i.e., LT-HSCs

plus ST-HSCs) was significantly higher in GHRKO mice

compared to those in age- and sex-matched littermates, with

increased cell-cycle entry but no detectable differences in

apoptosis (Figures 3F, 3G, and S3C–S3E). Also, the age-depen-

dent myeloid bias was not observed in the GHRKO mice

(Figure 3H). These data suggest that the periodically reduced

IGF-1 signaling caused by PF cycles may play a crucial role in

the hematopoietic regeneration observed in mice.

Prolonged Fasting Promotes Hematopoietic
Regeneration in a IGF-1/PKA-Dependent Manner
To understand the molecular mechanism by which PF and GHR/

IGF-1 deficiency promote hematopoietic recovery/regeneration,

we reanalyzed two of our previously published microarray data

sets and looked for genes whose expression significantly

changed in response toPFwitha focusongenessimilarlyaffected

by exposure of epithelial cells to IGF-1-deficient serum (Guevara-

Aguirre et al., 2011; Kim and Volsky, 2005; Kirschner et al., 2009;

Lee et al., 2012). In starved mice, the expression of the PKA cata-

lytic subunit alpha (PKACa) was significantly reduced in all tissues

tested (Table S3). Similarly, IGF-1-deficient serum from growth

hormone receptor-deficient (GHRD) human subjects caused

changes in theexpressionofbothpositiveandnegative regulators

ofPKAconsistentwithan inhibitionof its kinase activity (TableS4).

As PKA phosphorylates the cAMP response element-binding

transcription factor (CREB) at Ser133, p-CREB is commonly

used as an indicator of intracellular PKA activity (Gonzalez and

Montminy, 1989). Using mouse embryonic fibroblasts devoid

of the endogenous IGF-1 receptor (R- cells) and those overex-

pressing the human IGF1R (R+ cell), we showed that CREB

phosphorylation is positively regulated by IGF-1/IGF-1R in a

PKA-dependent manner, confirming the link between IGF-1

and PKA/CREB signaling in mammalian cells (Figure 4A). IGF-1

receptor (IGF-1R) expression, which was higher in progenitor

cells compared to LT-HSCs (Venkatraman et al., 2013), was

not affected by PF (Figure S4A). Taken together, our in vivo re-

sults indicate that PF reduces PKA signaling in BM cells at

least in part through reduced IGF-1 levels, but without affecting

IGF-1R expression (Figure 4B).
od; p < 0.01, log-rank (Mantel-Cox) test; n = 20 (ten male and ten female).

y 81, sixth recovery phase).

overy phase).

unts, and lymphoid/myeloid ratio (L/M) in mice treated with six cycles of CP

indicate the ranges of baseline values; *p < 0.05, two-way ANOVA, comparing

ratio of peripheral blood (PB) is defined as number of lymphocytes divided by

F and S1G.

yeloid ratio (L/M) in patients undergoing two cycles (C1 and C2) of platinum-

d 24 hr after chemo) prolonged fasting; D1 and D8 indicate the first day (before

he mean ± SEM; **p < 0.01, two-way ANOVA; sample size is indicated in pa-

th cycle); horizontal dashed lines indicate the baseline value.

e myeloid-biased (My-HSC) hematopoietic stem cells. The markers used are

C, and upper-SPLSK for Ly-HSC. The lower panels show amagnification of the

.

d into the recipient mice. The chimerism of donor-derived cells in PB and that in

phocytes to myeloid cells (L/M) in the reconstituted blood was also measured.

with the nonfasted control group both in combination with cyclophosphamide

Cell Stem Cell 14, 810–823, June 5, 2014 ª2014 Elsevier Inc. 813



Figure 2. Prolonged Fasting Cycles Promote Chemotherapy-Independent Hematopoietic Regeneration

Mice in the control group were fed ad libitum and those in the PF group were fasted for one or two cycles as indicated. n = 4–12 female mice per group. Error bars

represent SEM.

(A) BrdU incorporation assay for LSK cells. Mice undergoing 24 + 48 hr prolonged fasting were injected (i.p.) with BrdU (0.1 mg/g, twice a day, for 2 days, starting

after 24 hr of fasting.

(B) Number of long-term hematopoietic stem cells (LT-HSC), short-term hematopoietic stem cells (ST-HSC), and multipotent progenitors (MPP).

(C) Number of common lymphoid progenitors (CLP) and myeloid progenitors (MP)

(legend continued on next page)
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To demonstrate that IGF-1 is a mediator of PF-dependent

effects on HSCs, we tested whether exogenous IGF-1 can blunt

the effect of PF on HSC number and PKA activity. Fasted mice

were injected with IGF-1 (200 mg/kg) to reverse the reduction of

IGF-1 during PF. Results indicate that IGF-1 administration

significantly blunted PF-induced reduction of PKA/pCREB in

the LSKpopulation, particularly in HSCs (Figure 4C). It also blunt-

ed the PF-induced increase in HSCs but not in MPPs (Figure 4D;

Table S4). We further investigated whether the induction in HSCs

can lead to enhanced engraftment andwhether this effect is IGF-

1/PKA dependent. Results of competitive repopulation assays

indicate the PF improved hematopoietic reconstitution in PB

and in BM. This effect was blocked by exogenous IGF-1 (Figures

4E, 4F, S4B, and S4C). Results of secondary transplantation

further confirmed the effects in long-term repopulation capacity

(Figures 4G and 4H). Overall, these results strongly support a role

for lower IGF-1 and the consequent reduced activity of PKA in

PF-dependent stimulation of HSC self-renewal and the improve-

ment in both short- and long-term hematopoietic repopulation

capacities (Figures 4E–4H).

Because IGF-1R signaling and IGF-1 expression were both

reduced in the BM stromal niche cells (Lin�CD45�) from fasted

mice (Figure 5A), we investigated whether the stromal niche

could play a role in promoting PF-induced HSC self-renewal by

reducing IGF-1 levels in the microenvironment (as previously

shown in Figure 3A). To test this, LT-HSCs were purified (CD45+

LSK CD150+CD48�) from mice on either PF or the control diet

and then cross-exposed to the stromal niche cells (CD45�Lin�

fraction) from mice on either PF or the ad lib diet using coculture

systems (Figure 5B). Notably, LT-HSCs are unable to survive in

the absence of niche cells, so the isolated LT-HSCs were not

studied alone. Results indicate that the effect of PF on LT-HSC

is sufficient to promote the self-renewal of LT-HSC and its

capacity to generate ST-HSC and non-LSK progenitors (Lin-

non-LSK) (Figure 5C, comparing A to B, C to D). Also, the PF-

treated niche cells could increase the generation of ST-HSCs

from ad lib diet LT-HSCs (comparing A to C) and increases

further the ST-HSC number generated by PF-treated LT-HSCs

(comparing B to D). These results confirm the role of LT-HSCs

in mediating PF-dependent hematopoietic regeneration but

also indicate that niche cells exposed to PF can contribute to

the ST-HSC component of this regeneration in vitro.

Reduction of IGF-1 or PKA Signaling Promotes HSC
Self-Renewal
PKA has conserved proaging roles in yeast and mammals

(Fabrizio et al., 2001; Rinaldi et al., 2010). In yeast, integration

of an extra copy of the regulatory and inhibitory subunit of PKA,

BCY1 (BCY1oe) enhanced, whereasmutations inBCY1 that acti-

vate PKA decreased, cellular resistance to H2O2-induced oxida-

tive stress (Figure 6A) in agreement with our previous results with
(D) Cell-cycle analysis for BM cells using Ki67 and Hoechst 33342.

(E) Apoptosis analysis for BM cells using TUNEL assay.

For (A)–(E), *p < 0.05, **p < 0.01, ***p < 0.005, t test comparing the AL-fed contro

(F) Proportion of the lymphoid-biased (Ly-HSC), balanced (Bala-HSC), and the m

side population of LSK (lower-SPLSK) for My-HSC, middle-SPLSK for Bala-HSC, a

(G) Number of lymphocytes and myeloid cells in young (6 months, 48 hr fasting)

For (F) and (G), *p < 0.05, **p < 0.01, and ***p < 0.005, one-way ANOVA.
RAS2- and adenylate cyclase-deficient mutants (Fabrizio et al.,

2003; Fabrizio et al., 2001). In mammalian cells, it was confirmed

by us and others that disruption of PKA signaling protects against

stress (Figures S5A–S5C) (Yan et al., 2007).

The role of PKA in hematopoietic regeneration, however, is

poorly understood. It is known that PKA negatively regulates

Foxo1 and positively regulates CREB and G9a (Chen et al.,

2008; Gonzalez andMontminy, 1989; Lee et al., 2011; Yamamizu

et al., 2012a). FoxOs maintain hematopoietic stress-resistance,

self-renewal and lineage homeostasis (Tothova et al., 2007),

whereas CREB and G9a promote hematopoietic lineage com-

mitment and differentiation (Chen et al., 2012; Yamamizu et al.,

2012b). We found that in PF mice, the reduction of IGF-1/pAkt

and PKA/pCREB signaling was associated with an induction of

Foxo1 expression and a reduction of G9a (Figures 6B and

S5E), but it did not affect the expressions of Foxo3a and

Foxo4 (Figures S5F–S5H). Also, the results indicated that the

numbers of ST-HSC and MPP were significantly increased after

treatment with PKA small interfering RNA (siRNA) as well as after

treatment with IGF-1 siRNA (Figures 6C and S5D; Table S5), in

agreement with the finding that inhibition of G9a increases prim-

itive HSCs (Chen et al., 2012).

Given that inhibition of mTOR, another key effector of nutrient

signaling, is known to enhance HSC self-renewal and mainte-

nance autonomously and nonautonomously, we examined the

crosstalk between mTOR and PKA in HSCs and MPPs (Chen

et al., 2009; Huang et al., 2012). Ex vivo rapamycin (an mTOR

inhibitor) treatment alone did not cause an induction in the

number of HSCs as expected based upon previous studies

with in vivo treatments (Figure 6C) (Nakada et al., 2010; Yilmaz

et al., 2012). This could be due to the need for a longer period

of mTOR inhibition to achieve HSC induction (Nakada et al.,

2010). In fact, when cotreated with PKA siRNA, rapamycin

caused an additional induction in ST-HSC and MPP, compared

to that caused by PKA knockdown alone suggesting that

diminished PKA signaling promotes the induction of HSCs,

which can be further potentiated by mTOR inhibition in certain

stem and progenitor cell subpopulations (Figure 6C). Notably,

the double inhibition of PKA and mTOR resulted in the syner-

gistic induction in ST-HSC and MPP but blunted the induction

in LT-HSC caused by PKA knockdown alone, which is similar to

what was caused by IGF-R knockdown (Figure 6C), and in

agreement with the potential role for IGF-1 in the regulation

of both PKA and mTOR in HSCs (Fontana et al., 2010; Longo

and Fabrizio, 2002).

The BM cells treated with IGF-1R siRNA or PKA siRNA ex vivo

(exBM) were further transplanted into the irradiated recipient

mice to assess their hematopoietic reconstitution capacity. In

agreement with the effects observed in PF mice, the PKA or

IGF-1R-deficient BM cells caused a significant improvement in

engraftment in PB and in BM compared to untreated BM cells
ls.

yeloid-biased (My-HSC) hematopoietic stem cells. The markers used are lower

nd upper-SPLSK for Ly-HSC.

and old (18 months, eight cycles of fasting) mice.
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(Std) (Figure 6D). The long-term repopulation capacity was also

confirmed by secondary transplantation (Figure S5I).

DISCUSSION

When considering changes in gene expression and metabolism,

as well as the levels of various hormones, PF promotes co-

ordinated effects that would be difficult to achieve with any

pharmacological or other dietary intervention. In yeast, the key

changes responsible for the protective effects of starvation are

the downregulation of the glucose-sensing Ras/adenylate

cyclase/PKA and of the amino acid-sensing Tor/Sch9 (S6K)

pathways (Figure 7A) (Fontana et al., 2010). When mutations in

both pathways are combined, cells are extremely resistant to

a wide variety of toxins and can live up to 5-fold longer than

normal (Fabrizio et al., 2001; Kaeberlein et al., 2005; Kenyon,

2001; Longo and Finch, 2003; Wei et al., 2009). In mammals,

mutations that cause deficiency in the GHR-IGF-1 axis promote

a range of phenotypes that overlap with those in the highly pro-

tected yeast with deficiencies in nutrient signaling pathways

including dwarfism, stress resistance, and longevity extension

(Figure 7A) (Lee and Longo, 2011). In fact, cells from GHR/

IGF-1-deficient mice are protected from multiple forms of stress

(Brown-Borg et al., 2009; Salmon et al., 2005) and the IGF-1-

deficient (LID) mice, with an over 70% reduction in circulating

IGF-1, are resistant to several chemotherapy drugs (Lee et al.,

2010). Here, we connect the GHR-IGF-1 and the PKA proaging

pathways by showing that PKA functions downstream of IGF-1

to sensitize BM cells in agreement with results in yeast and with

the previously established connection between IGF-1 and PKA

in mammalian neuronal cells (Subramaniam et al., 2005).

However, the studies of growth-deficient yeast andmice could

not have predicted the remarkable effect of PF cycles in promot-

ing stem cell-based regeneration of the hematopoietic system.

Calorie intake was previously shown to affect the balance of

stem cell self-renewal and differentiation, which is important

for somatic maintenance and long-term survival (Bondolfi

et al., 2004; Chen et al., 2003; Ertl et al., 2008; Jasper and Jones,

2010; Rafalski and Brunet, 2011; Rando and Chang, 2012). In

mice, chronic calorie restriction (CR) promotes the self-renewal

of intestinal stem cells, muscle stem cell engraftment and neural

regeneration, preserves the long-term regenerative capacity of

HSCs, and prevents the decline of HSC number during aging

in certain mouse strains (Lee et al., 2002; Bondolfi et al., 2004;

Cerletti et al., 2012; Chen et al., 2003; Ertl et al., 2008; Rafalski
Figure 3. Deficiency in GHR-IGF-1 Signaling Promotes Hematopoietic
Measurements were performed in GHRKO and their age-matched littermates, w

mice per group. Error bars represent SEM.

(A) BM IGF-1 level in GHRKO mice and PF mice compared to wild-type mice fed

(B) DNA damage measurement (olive tail moment) in BM cells and mononuclear p

recovery phase).

(C) Apoptosis measurement (TUNEL assay) in hematopoietic stem and progenito

(D) Number of hematopoietic stem and progenitor cells (day 84, end of sixth cyc

(E) Total white blood cell (WBC) and lymphocyte counts in PB of GHRKOmice and

lines indicate CP treatments; horizontal dashed lines indicate baseline value; *p <

six cycles of CP treatments. PB L/M ratio is defined as the number of lymphocyt

(F) Number of long-term hematopoietic stem cells (LT-HSC) and short-term hem

(G) Cell-cycle analysis using Ki67 and Hoechst 33342.

(H) Number of lymphocytes and myeloid cells in young (aged 6 months) and old

For (B)–(D) and (F)–(H), *p < 0.05, **p < 0.01; t test comparing to the wild-type co
and Brunet, 2011; Yilmaz et al., 2012). Reduction of mTOR

signaling has been implicated as one of the major molecular

mechanisms responsible for the effects of CR on enhanced

stem cell function (Huang et al., 2012; Rafalski and Brunet,

2011; Yilmaz et al., 2012). However, neither CR nor other dietary

intervention had previously been shown to promote a coordi-

nated effect leading to the regeneration and/or rejuvenation of

a major portion of a system or organ.

Because during PF mammalian organisms minimize energy

expenditure in part by rapidly reducing the size of a wide range

of tissues, organs, and cellular populations including blood cells,

the reversal of this effect during refeeding represents one of the

most potent strategies to regenerate the hematopoietic and

possibly other systems and organs in a coordinated manner.

Here, we show that PF causes a major reduction in WBC num-

ber, followed, during refeeding, by a coordinated process able

to regenerate this immune system deficiency by changes begin-

ning during the fasting period, which include a major increase in

LT-HSC and ST-HSC and redirection of the frequency of Ly-

HSC/Bala-HSC/My-HSC leading to a lineage-balanced mode.

In fact, we show that PF alone causes a 28% decrease WBC

number, which is fully reversed after refeeding (Figures 7B and

S2F). Even after WBCs are severely suppressed or damaged

as a consequence of chemotherapy or aging, cycles of PF are

able to restore the normal WBC number and lineage balance,

suggesting that the organism may be able to exploit its ability

to regenerate the hematopoietic system after periods of starva-

tion, independently of the cause of the deficiency (Figure 7B).

In agreement with our results, starvation protects germline

stem cells (GSCs) and extends reproductive longevity in

C. elegans through an adaptive energy shift toward the less

committed cells (Angelo and Van Gilst, 2009). In contrast,

short-term fasting (%24 hr) in Drosophila promotes the differen-

tiation of hematopoietic progenitors to mature blood cells (Shim

et al., 2012). It will be important to determine whether the

coordinated regenerative changes observed during PF and

refeeding may resemble at least in part the sophisticated pro-

gram responsible for the generation of the hematopoietic system

during development.

Recent studies revealed that HSCs rely heavily on the meta-

bolic programs that prevent aerobicmetabolism tomaintain their

quiescent state and self-renewal capacity (Ito et al., 2012; Ta-

kubo et al., 2013; Yu et al., 2013). In the case of PF, the energy

metabolism is switched progressively from a carbohydrate-

based to a fat- and ketone body-based catabolism, which could
Regeneration in Both Chemo-Treated and Untreated Mice
ith or without treatment with six cycles of CP (200 mg/kg, i.p.). n = 4–8 female

ad libitum (WT-AL), *p < 0.05, **p < 0.01, one-way ANOVA.

eripheral blood cells (PB) from GHRKO and their littermates (WT) (day 81, sixth

r cells (day 81, sixth recovery phase).

le); horizontal dashed lines indicate the chemo-free baseline value.

their littermates (WT); each point represents the mean ± SEM; vertical dashed

0.05, two-way ANOVA for recovery phases; lymphoid/myeloid ratio (L/M) after

es divided by the number of myeloid cells (i.e., granulocytes and monocytes).

atopoietic stem cells (ST-HSC).

(aged 18 months) mice.

ntrol.
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Figure 5. The Role of Stromal Niche in PF-Induced HSC Self-Renewal

(A) Levels of the indicated proteins in BM stromal niche cells (Lin-CD45�).
(B) Diagrammatic representation of the coculture experiment.

(C) Number of CD45+ progenies generated by the purified LT-HSCs exposed to the indicated niche cells. Cells were grown in the contacting coculture system for

3 days and then analyzed by FACS. Error bars represent SEM.

*p < 0.05, **p < 0.01, and ***p < 0.005, t test for (A) and one-way ANOVA for (C).
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contribute to HSC self-renewal, in agreement with findings that

fatty acid oxidation promotes HSC asymmetric self-renewal

over the symmetric commitment (Ito et al., 2012).

PKA is known to promote lineage specification of HSC

through CREB and G9a (Chen et al., 2012; Yamamizu et al.,

2012b). As inhibition of G9a has been a key strategy to promote

reprogramming (Huangfu et al., 2008; Shi et al., 2008), the PF-

induced downregulation of G9a shown here may redirect cell

fate through a similar process causing the induction in HSCs,

analogously to that caused by G9a inhibition (Figure 5B)(Chen
Figure 4. Prolonged Fasting Promotes IGF-1/PKA-Dependent Hemato

(A) PKA-dependent phosphorylation of CREB visualized by ICC inmouse embryon

human IGF1R (R+ cells). R+ cells were treated with IGF-1 and compared to cells

(B) Prolonged fasting (PF) reduces both circulating IGF-1 levels and PKA activity

(C and D) IGF-1 injection blunted the PF-induced (C) reduction of PKA/pCREB (D

(E–H) The chimerism of donor-derived cells in PB and that in the BM was determ

n = 4–8 female mice per group, *p < 0.05, **p < 0.01, and ***p < 0.005, one-way
et al., 2012). Recent studies also indicate that PKA can directly

phosphorylate and negatively regulate FoxO1 (Chen et al.,

2008; Lee et al., 2011), which has a profound role in stem cell

stress resistance, self-renewal and pluripotency maintenance

(Tothova et al., 2007; Zhang et al., 2011). Whereas PKA is impli-

cated in stem cell differentiation, our study suggests that cycles

of PF downregulate IGF-1 and PKA to promote stem cell self-

renewal.

A therapeutic challenge of hematopoietic regeneration is to

stimulate stem cell production for immediate tissue repair while
poietic Regeneration

ic fibroblast (MEFs) devoid of endogenous IGF-1R (R� cells) or overexpressing

transfected with PKACa siRNA.

in BM cells in mice.

) increase in hematopoietic stem cells.

ined 16 weeks after primary and secondary BM transplantation.

ANOVA. Error bars represent SEM.
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Figure 6. Reduction of IGF-1-PKA Signaling Promotes Hematopoietic Stem Cell Self-Renewal

(A) Yeast cells (DBY746 background) overexpressing BCY1 (BCY1oe), which reduces PKA activity, or cells carryingmutations that activate PKA activity (bcy1CA1

and bcy1CA2) were grown in SDC for 3 days and treated with H2O2 (50 or 100 mM) for 30 min at 30�C. Cells were serially diluted and plated onto YPD plates.

(B) PKA-regulated self-renewal pathways in PF mice. The levels of phosphorylation or expression of intracellular proteins in the indicated cellular populations

and expression of indicated genes in total BM cells. BM cells were collected frommice with or without 48 hr starvation (AL and PF). n = 4 female mice per group,

**p < 0.01, *p < 0.05, t test.

(C) Number of hematopoietic stem cells (per 53 105 total BM) and progenitor cells (LT-HSC, ST-HSC, and MPP) under the indicated treatments. *p < 0.05, **p <

0.01, and ***p < 0.005, one-way ANOVA. See also Figures S7F and S7G.

BM cells treated with PKA siRNA, IGF-1R siRNA or IGF-1 (versus nontreated cells) were transplanted into immunocompromised-recipient mice.

(D) The engraftment in PBwasmeasured at indicated time point after primary transplantation and the engraftment in BMwasmeasured at the end of the 16weeks

after primary transplantation. n = 4–8 female mice per group, *p < 0.05, **p < 0.01, and ***p < 0.005, one-way ANOVA.

Error bars represent SEM.
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avoiding stem cell depletion under stress (Pang et al., 2011). Our

results indicate that cycles of an extreme dietary intervention

represent a powerful mean to modulate key regulators of cellular

protection and tissue regeneration but also provide a potential

therapy to reverse or alleviate the immunosuppression or immu-

nosenescence caused by chemotherapy treatment and aging,

respectively, and possibly by a variety of diseases affecting the

hematopoietic and immune systems and other systems and

organs. The clinical data shown here provide preliminary results

supporting the possibility that these effects can also be trans-

lated into effective clinical applications.

EXPERIMENTAL PROCEDURES

Mice

C57BL/6J mice (Jackson Laboratory) were used in this study. Mice are either

fasted for 48 hr or fed ad libitum before chemotherapy treatment. Cyclophos-
820 Cell Stem Cell 14, 810–823, June 5, 2014 ª2014 Elsevier Inc.
phamide (CP) was administered intraperitoneally (i.p.) at the dose of 200mg/kg

every 12–14 days (six cycles total). IGF-1 was injected (i.p.) at the dose of

100 mg/kg, twice a day. Six- to 8-week-old B6.SJL mice (Taconic) were

used as recipient mice in the competitive repopulation assay. Genotyping

for GHRKO mice was performed as shown in Figure S3A. All animal experi-

ments were done in accordance with the USC Institutional Animal Care and

Use Committee and NIH guidelines.

Comet Assay

DNA damage (including single-stranded DNA and double-stranded DNA

breaks) in freshly collected blood and bone marrow (BM) cells was assessed

by CometAssay (Trevigen) with a Nikon Eclipse TE300 fluorescent microscope

and analyzed with the Comet Score (TriTek, v.1.5). One hundred to two

hundred cells were scored per experimental sample.

Complete Blood Count

Peripheral blood (PB) was collected via tail bleeds into heparinized

microhematocrit capillary tubes (Fisher Scientific) was and analyzed using

BC-2800 Auto Hematology Analyzer (Mindray). CBC profiles from clinical



Figure 7. PF Reduces IGF-1/PKA to Pro-

mote Lineage-Balanced Hematopoietic

Regeneration

(A) A simplified model for a partially conserved

nutrient signaling PKA pathway in yeast and

mammalian cells. Arrows show activating actions,

and horizontal bars indicate inhibitory actions. GH,

growth hormone; AC, adenylate cyclase; PKA,

protein kinase A; CREB, cAMP response element-

binding protein; Foxo1, Forkhead box protein O1;

G9a, H3 Lys-9 methyltransferase.

(B) A simplified model for PF-induced effects on

WBC and HSCs. Fasting causes amajor reduction

in WBCs followed by their replenishment after re-

feeding, based on effects on HSCs self-renewal

resulting in increased progenitor and immune

cells. These effects of PF can result in reversal of

chemotherapy-based immunosuppression but

also in the rejuvenation of the immune cell profile in

old mice.
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trial were obtained from phase I clinical trial NCT00936364, approved

by USC Institutional Review Boards (IRBs) (http://clinicaltrials.gov/show/

NCT00936364).

Competitive Repopulation Assay

BM collection and transplantation were performed as previously described

(Adams et al., 2007). Briefly, BM cells were collected from mice (C57B/6J)

treated with six cycle CP. BM cells (2.5 3 105) from CP-treated mice were

mixed with an equal number of those from a wild-type competitor mouse

(B6.SJL) and injected into recipient B6.SJL, lethally irradiated 24 hr previously

with 10 Gy of radiation. The relative contribution of engraftment from the

different cell sources was assessed by flow cytometry of the PB with

CD45.2 (C57B/6) and CD45.1 (B6.SJL) antigens.

FACS Analysis

FACS analyses for LT-HSCs (LSK-CD48�CD150+), ST-HSCs (LSK-CD48�

CD150�), and MPPs (LSK CD48+CD150�) in BM were performed as previ-

ously described (Figure S1) (Adams et al., 2007; Challen et al., 2010).

Freshly harvested BM cells were stained with lineage, stem, and progenitor

markers, followed by Annexin-V/7-AAD staining and TUNEL assay for

apoptosis analysis or stained with PY/Hoechst 33342 or Ki67/Hoechst

33342 for cell-cycle analysis. For competitive repopulation analysis, PB
Cell Stem Cell 14, 810–
was collected from tail vein. Fifty to one hundred

microliters of blood was diluted 1:1 with PBS

and incubated with anti-CD45.1, anti-CD45.2 an-

tibodies, and anti-CD11b (BD Biosciences).

Analysis was performed with BD FACS diva on

LSR II.

BrdU Incorporation

For detecting cell genesis, mice were injected (i.p.)

with the filter sterilizedBrdU 2.0% solution (Sigma)

at 0.1 mg/g body weight in PBS, twice a day, for

2 days, starting after 24 hr of prolonged fasting

(PF mice). BM cells were collected and stained

with anti-BrdU combining with the plasma

membranemarker antibodies asmentioned above

and analyzed on BD FACS diva on an LSR II, ac-

cording to the manufacturer’s protocol (BD

Biosciences).

Oxidative Stress Assay for Yeast

Day 3 cells were diluted to anOD600 of 1 in K-phos-

phate buffer (pH 6) and treated with 50 or 100 mM

hydrogen peroxide for 30 min. Serial dilutions of
untreated and treated cells were spotted onto YPD plates and incubated at

30�C for 2–3 days.

Cell Culture and Treatments

Cell lines and primary cells used in this study were cultured at 37�C and 5%

CO2. Mouse embryonic fibroblast with overexpressed human IGF1R (R+ cells)

were derived from IGF1R knockout mice (obtained from Dr. Baserga) and

cultured in DMEM/F12 supplementedwith 10% fetal bovine serum (FBS). Cells

were seeded at 80% (R+ cells) or 50% (exBMor hAFSCs) confluence for IGF-1R

and PKACa siRNA transfection (100 nM, with 1% X-tremeGENE transfection

reagents, Roche) and/or rapamycin treatment (5 nM), and the inhibition effi-

ciencies of the target proteins are shown in Table S5. The IGF-1 induction

(10 nM, 15min) was performed at 24 hr after standard incubation. CREB phos-

phorylation was measured by immunocytochemistry (ICC) with the pCREB-

AF488 antibody (cell signaling, 1:200, overnight at 4�C). Explanted BM cells,

isolated HSCs and BM stromal cells were incubated with alpha-MEM + 10%

FBS. Cell contents were analysis by FACS as described above.

Statistical Analysis

The significance of the differences in mouse survival curves was determined

by Log-rank (Mantel-Cox). Unless otherwise indicated in figure legends,

data are presented as means ± SEM. Student’s t tests for two groups and
823, June 5, 2014 ª2014 Elsevier Inc. 821
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ANOVA for multiple groups were used to assess statistical significance

(*p < 0.05, **p < 0.01, ***p < 0.005).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and five tables and can be found with this article online at http://

dx.doi.org/10.1016/j.stem.2014.04.014.
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