1,487 research outputs found

    Dose escalation study of intravenous and intra-arterial N-acetylcysteine for the prevention of oto- and nephrotoxicity of cisplatin with a contrast-induced nephropathy model in patients with renal insufficiency.

    Get PDF
    BACKGROUND: Cisplatin neuro-, oto-, and nephrotoxicity are major problems in children with malignant tumors, including medulloblastoma, negatively impacting educational achievement, socioemotional development, and overall quality of life. The blood-labyrinth barrier is somewhat permeable to cisplatin, and sensory hair cells and cochlear supporting cells are highly sensitive to this toxic drug. Several chemoprotective agents such as N-acetylcysteine (NAC) were utilized experimentally to avoid these potentially serious and life-long side effects, although no clinical phase I trial was performed before. The purpose of this study was to establish the maximum tolerated dose (MTD) and pharmacokinetics of both intravenous (IV) and intra-arterial (IA) NAC in adults with chronic kidney disease to be used in further trials on oto- and nephroprotection in pediatric patients receiving platinum therapy. METHODS: Due to ethical considerations in pediatric tumor patients, we used a clinical population of adults with non-neoplastic disease. Subjects with stage three or worse renal failure who had any endovascular procedure were enrolled in a prospective, non-randomized, single center trial to determine the MTD for NAC. We initially aimed to evaluate three patients each at 150, 300, 600, 900, and 1200 mg/kg NAC. The MTD was defined as one dose level below the dose producing grade 3 or 4 toxicity. Serum NAC levels were assessed before, 5 and 15 min post NAC. Twenty-eight subjects (15 men; mean age 72.2 +/- 6.8 years) received NAC IV (N = 13) or IA (N = 15). RESULTS: The first participant to experience grade 4 toxicity was at the 600 mg/kg IV dose, at which time the protocol was modified to add an additional dose level of 450 mg/kg NAC. Subsequently, no severe NAC-related toxicity arose and 450 mg/kg NAC was found to be the MTD in both IV and IA groups. Blood levels of NAC showed a linear dose response (p < 0.01). Five min after either IV or IA NAC MTD dose administration, serum NAC levels reached the 2-3 mM concentration which seemed to be nephroprotective in previous preclinical studies. CONCLUSIONS: In adults with kidney impairment, NAC can be safely given both IV and IA at a dose of 450 mg/kg. Additional studies are needed to confirm oto- and nephroprotective properties in the setting of cisplatin treatment. Clinical Trial Registration URL: https://eudract.ema.europa.eu . Unique identifier: 2011-000887-92

    On the equivalence of Eulerian and Lagrangian variables for the two-component Camassa-Holm system

    Full text link
    The Camassa-Holm equation and its two-component Camassa-Holm system generalization both experience wave breaking in finite time. To analyze this, and to obtain solutions past wave breaking, it is common to reformulate the original equation given in Eulerian coordinates, into a system of ordinary differential equations in Lagrangian coordinates. It is of considerable interest to study the stability of solutions and how this is manifested in Eulerian and Lagrangian variables. We identify criteria of convergence, such that convergence in Eulerian coordinates is equivalent to convergence in Lagrangian coordinates. In addition, we show how one can approximate global conservative solutions of the scalar Camassa-Holm equation by smooth solutions of the two-component Camassa-Holm system that do not experience wave breaking

    Hedgehog Spin-texture and Berry's Phase tuning in a Magnetic Topological Insulator

    Full text link
    Understanding and control of spin degrees of freedom on the surfaces of topological materials are key to future applications as well as for realizing novel physics such as the axion electrodynamics associated with time-reversal (TR) symmetry breaking on the surface. We experimentally demonstrate magnetically induced spin reorientation phenomena simultaneous with a Dirac-metal to gapped-insulator transition on the surfaces of manganese-doped Bi2Se3 thin films. The resulting electronic groundstate exhibits unique hedgehog-like spin textures at low energies, which directly demonstrate the mechanics of TR symmetry breaking on the surface. We further show that an insulating gap induced by quantum tunnelling between surfaces exhibits spin texture modulation at low energies but respects TR invariance. These spin phenomena and the control of their Fermi surface geometrical phase first demonstrated in our experiments pave the way for the future realization of many predicted exotic magnetic phenomena of topological origin.Comment: 38 pages, 18 Figures, Includes new text, additional datasets and interpretation beyond arXiv:1206.2090, for the final published version see Nature Physics (2012

    Languages cool as they expand: Allometric scaling and the decreasing need for new words

    Get PDF
    We analyze the occurrence frequencies of over 15 million words recorded in millions of books published during the past two centuries in seven different languages. For all languages and chronological subsets of the data we confirm that two scaling regimes characterize the word frequency distributions, with only the more common words obeying the classic Zipf law. Using corpora of unprecedented size, we test the allometric scaling relation between the corpus size and the vocabulary size of growing languages to demonstrate a decreasing marginal need for new words, a feature that is likely related to the underlying correlations between words. We calculate the annual growth fluctuations of word use which has a decreasing trend as the corpus size increases, indicating a slowdown in linguistic evolution following language expansion. This ‘‘cooling pattern’’ forms the basis of a third statistical regularity, which unlike the Zipf and the Heaps law, is dynamical in nature

    On the conceptualization and measurement of flow

    Get PDF
    This chapter introduces in chronological order the three main measurement methods – the Flow Questionnaire, the Experience Sampling Method, and the standardized scales of the componential approach – that researchers developed and used in conducting research on the flow state. Each measurement method and underlying conceptualization is explained, and its strengths and limitations are then discussed in relation to the other measurement methods and associated conceptualizations. The analysis reveals that, although the concept of flow remained stable since its inception, the models of flow that researchers developed in conjunction with the measurement methods changed substantially over time. Moreover, the findings obtained by applying the various measurement methods led to corroborations and disconfirmations of the underlying models, and hence provided indications on how to interpret and possibly modify flow theory. The chapter then analyzes the emerging process approach, which conceptualizes and measures flow as a dynamic path rather than an object, and highlights its potential for integrating flow and creativity within the same conceptual framework. The final section outlines new directions for developing more valid and useful measurement methods that can help to advance the understanding of flow, its antecedents, and its consequences

    A novel class of microRNA-recognition elements that function only within open reading frames.

    Get PDF
    MicroRNAs (miRNAs) are well known to target 3' untranslated regions (3' UTRs) in mRNAs, thereby silencing gene expression at the post-transcriptional level. Multiple reports have also indicated the ability of miRNAs to target protein-coding sequences (CDS); however, miRNAs have been generally believed to function through similar mechanisms regardless of the locations of their sites of action. Here, we report a class of miRNA-recognition elements (MREs) that function exclusively in CDS regions. Through functional and mechanistic characterization of these 'unusual' MREs, we demonstrate that CDS-targeted miRNAs require extensive base-pairing at the 3' side rather than the 5' seed; cause gene silencing in an Argonaute-dependent but GW182-independent manner; and repress translation by inducing transient ribosome stalling instead of mRNA destabilization. These findings reveal distinct mechanisms and functional consequences of miRNAs that target CDS versus the 3' UTR and suggest that CDS-targeted miRNAs may use a translational quality-control-related mechanism to regulate translation in mammalian cells

    MSH3 polymorphisms and protein levels affect CAG repeat instability in huntington's disease mice

    Get PDF
    Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)~100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases

    Dimensionality of Carbon Nanomaterials Determines the Binding and Dynamics of Amyloidogenic Peptides: Multiscale Theoretical Simulations

    Get PDF
    Experimental studies have demonstrated that nanoparticles can affect the rate of protein self-assembly, possibly interfering with the development of protein misfolding diseases such as Alzheimer's, Parkinson's and prion disease caused by aggregation and fibril formation of amyloid-prone proteins. We employ classical molecular dynamics simulations and large-scale density functional theory calculations to investigate the effects of nanomaterials on the structure, dynamics and binding of an amyloidogenic peptide apoC-II(60-70). We show that the binding affinity of this peptide to carbonaceous nanomaterials such as C60, nanotubes and graphene decreases with increasing nanoparticle curvature. Strong binding is facilitated by the large contact area available for π-stacking between the aromatic residues of the peptide and the extended surfaces of graphene and the nanotube. The highly curved fullerene surface exhibits reduced efficiency for π-stacking but promotes increased peptide dynamics. We postulate that the increase in conformational dynamics of the amyloid peptide can be unfavorable for the formation of fibril competent structures. In contrast, extended fibril forming peptide conformations are promoted by the nanotube and graphene surfaces which can provide a template for fibril-growth

    Origination of New Immunological Functions in the Costimulatory Molecule B7-H3: The Role of Exon Duplication in Evolution of the Immune System

    Get PDF
    B7-H3, a recently identified B7 family member, has different isoforms in human and mouse. Mouse B7-H3 gene has only one isoform (2IgB7-H3) with two Ig-like domains, whereas human B7-H3 has two isoforms (2IgB7-H3 and 4IgB7-H3). In this study a systematic genomic survey across various species from teleost fishes to mammals revealed that 4IgB7-H3 isoform also appeared in pigs, guinea pigs, cows, dogs, African elephants, pandas, megabats and higher primate animals, which resulted from tandem exon duplication. Further sequence analysis indicated that this duplication generated a new conserved region in the first IgC domain, which might disable 4IgB7-H3 from releasing soluble form, while 2IgB7-H3 presented both membrane and soluble forms. Through three-dimensional (3D) structure modeling and fusion-protein binding assays, we discovered that the duplicated isoform had a different structure and might bind to another potential receptor on activated T cells. In T cell proliferation assay, human 2IgB7-H3 (h2IgB7-H3) and mouse B7-H3 (mB7-H3) both increased T cell proliferation and IL-2, IFN-γ production, whereas human 4IgB7-H3 (h4IgB7-H3) reduced cytokine production and T cell proliferation compared to control. Furthermore, both h2IgB7-H3 and mB7-H3 upregulated the function of lipopolysacharide (LPS)-activated monocyte in vitro. Taken together, our data implied that during the evolution of vertebrates, B7-H3 exon duplication contributed to the generation of a new 4IgB7-H3 isoform in many mammalian species, which have carried out distinct functions in the immune responses
    corecore