460 research outputs found

    Decolorization of aqueous effluents using agro waste

    Get PDF
    In this study, the potential of agrowaste for a food dye sequestration from aqueous effluents was investigated. Initially, four local agrowaste waste namely pumpkin seed hull, bean null, oat straw and nut shells, were tested in natural condition. Bean hull (BH) revealed the best uptake capacity for Food Red 14 (FR14). The agro waste was characterised before and after dye sorption process using SEM and FTIR techniques. Those analyses were conducted in order to identify the principal connections contributing to the sorption process. The point of zero charge of BH surface, pHpzc was assessed at 4.6, which indicated a mostly acidic surface, favorable for dye adsorption at pH<6, when the sorbent is positively charged. The dye removal efficiency of the adsorbent has been established in relation to some factors, such as: pH, amount of adsorbent, dye initial concentration, contact time and temperature. In order to make the sorption process predictable, four empirical isotherms and four kinetics models were applied to the experimental data so as to enact the nature of the sorption process. Attempts have also been made for sorbent viability by testing different solvents for FR14 desorption. FTIR spectra reveal the main bands in FR14 sorption process: that at 1450 cm-1 corresponding to C=C bond from the aromatic ring appears greatly diminished for FR14-BH after the sorption process and suggests a horizontal orientation of the molecules. The movement of the band at 3442 cm-1, corresponding to -OH groups, to lower wave number suggests lower involvement of these groups in the sorption process. The others band movement from BH spectra after the sorption process is due to physical interactions (hydrogen bond, van der Waals force) that occur between functional groups of sorbent and dye. The present study shows that the agro-waste bean hull is very effective as biosorbent for Food Red 14 removal from aqueous solutions, from a large range of dye concentration in aqueous solutions (5-400 mg L-1) in batch system. Since the agricultural wastes used in this study are friendly, abundantly and locally available, the sorbents are economically viable for aqueous effluents decolorization

    Bioremediation: an overview on current practices, advances, and new perspectives in environmental pollution treatment

    Get PDF
    [Excerpt] Environmental pollution generated the need to search for new environmentally friendly, low-cost, and more efficient environmental clean-up techniques for its removal or reduction. Bioremediation, a branch of environmental biotechnology, is nowadays considered as one of the most promising alternatives. This technology uses the amazing ability of microorganisms or plants to accumulate, detoxify, degrade, or remove environmental contaminants. Bioremediation provides the transformation and/or even removal of organic and inorganic pollutants, even when they are present at low concentration. Continuous efforts are still made to understand the mechanisms by which microorganisms and plants remove or transform environmental pollutants. Thus, the purpose of this special issue was to explore different visions on bioremediation, while addressing recent advances and new ideas in the perspective of efficient process scale-up in view of application at larger scales. Authors’ contributions cover various topics with a range of papers including original research and review articles spanning studies in remediation of different environments which outline new findings in the biotechnology field. This special issue contains five papers including one review article and four original research articles. A brief description of these five manuscripts is detailed below. [...]We would like to extend our gratitude to all the authors who submitted their work for consideration in our special issue and to reviewers for their critical feedback. Contributions of Raluca Maria Hlihor and Maria Gavrilescu to this special issue were supported by a grant of the Romanian National Authority for Scientific Research,CNCS-UEFISCDI (Project no. PN-III-P4-ID-PCE-2016-0683, Contract no. 65/2017). Teresa Tavares’ contribution is supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the research project PTDC/AAG-TEC/5269/2014, the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684), and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of NORTE 2020 (Programa Operacional Regional do Norte).info:eu-repo/semantics/publishedVersio

    Effect of ferromagnetic nanoparticle on dyes biodegradation

    Get PDF
    In this study the biodecolourisation of two dyes, a xanthene dye, Erythrosine B (Ery B) and an azo dye, Reactive Red 51 (RR120), was investigated colourdecolourisationunder batch anaerobic conditions by using non - acclimated anaerobic granular sludge. The effect of ferromagnetic nanoparticle (FN) (as adsorbent or mediator) on dyes removal was experienced

    UV/TiO2 photocatalytic degradation of xanthene dyes

    Get PDF
    UV/titanium dioxide (TiO2) degradation of two xanthene dyes, erythrosine B (Ery) and eosin Y (Eos), was studied in a photocatalytic reactor. Photocatalysis was able to degrade 98% of Ery and 73% of Eos and led to 65% of chemical oxygen demand removal. Experiments in buffered solutions at different initial pH values reveal the pH dependence of the process, with better results obtained under acidic conditions due to the electrostatic attraction caused by the opposite charges of TiO2 (positive) and of anionic dyes (negative). Batch activity tests under methanogenic conditions showed the high toxicity exerted by the dyes even at low concentrations (~85% with initial concentration of 0.3 mmol L 1), but the end products of photocatalytic treatment were much less toxic toward methanogenic bacteria, as detoxification of 85 ± 5% for Eos and 64 ± 7% for Ery were obtained. In contrast, the dyes had no inhibitory effect on the biogeniccarbon biodegradation activity of aerobic biomass, obtained by respirometry. The results demonstrate that photocatalysis combining UV/TiO2 as a pretreatment followed by an anaerobic biological process may be promising for the treatment of wastewaters produced by many industries.This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS UEFISCDI, project PN-II-ID-PCE-2011-3-0559, contract 265/2011, and the PTDC/AMB/69335/2006 project grants. Luciana Pereira holds a Pos-Doc fellowship (SFRH/BPD/80941/2011), Raquel Pereira holds a fellowship (SFRH/BPD/39086/2007) and Catarina S. Oliveira holds a PhD fellowship (SFRH/BD/32289/2006) from Fundacao para a Ciencia e Tecnologia

    Bioremediation of Cr(VI) polluted wastewaters by sorption on heat inactivated Saccharomyces cerevisiae biomass

    Get PDF
    The potential of heat inactivated Saccharomyces cerevisiae in the bioremoval and reduction of Cr (VI) ions from wastewaters was evaluated in terms of metal uptake in time and at equilibrium, and biosorption efficiency, by varying pH, biosorbent doses, contact time and temperature, in batch mode. During the sorption process, the heat inactivated biomass of the yeast Saccharomyces cerevisiae is capable of reducing Cr(VI) to Cr(III). Different kinetic models based on adsorption and reduction are used to represent the kinetic data of Cr(VI) bioremoval by S. cerevisiae, in explaining the biosorption mechanism of heavy metals and potential rate-controlling steps, in the perspective of full-scale process design. The results indicated some potential differences in the Cr(VI) removal mechanism at different experimental conditions. FTIR and SEM analysis were performed as well as to elucidate the mechanism of metal bioremoval by S. cerevisiae. FTIR spectra indicate that heavy metal bioremoval process doesn’t imply in this case the formation of stable covalent bonds, but it is predominantly based on chemical interactions, ion-exchange type. The SEM micrographs of Cr-loaded yeast, indicates that the surface morphology doesn’t change much after chromium ions were uptaken. This leads to the conclusion that Cr(VI) reduction occurs at the interface of the adsorbent.This paper was elaborated with the support of BRAIN project Doctoral scholarships as an investment in intelligence - ID 6681, financed by the European Social Found and Romanian Government and with the support of a grant of the Romanian National Authority for Scientific Research, CNCS - UEFISCDI, project number PN-II-ID-PCE-2011-3-0559", Contract 265/2011

    Biological decolorization of xanthene dyes by anaerobic granular biomass

    Get PDF
    Biodegradation of a xanthene dyes was investigated for the first time using anaerobic granular sludge. On a first screening, biomass was able to decolorize, at different extents, six azo dye solutions: acid orange 7, direct black 19, direct blue 71, mordant yellow 10, reactive red 2 and reactive red 120 and two xanthene dyes—Erythrosine B and Eosin Y. Biomass concentration, type of electron donor, induction of biomass with dye and mediation with activated carbon (AC) were variables studied for Erythrosine B (Ery) as model dye. Maximum color removal efficiency was achieved with 4.71 g VSS L−1, while the process rates were independent of the biomass concentration above 1.89 g VSS L−1. No considerable effects were observed when different substrates were used as electron donors (VFA, glucose or lactose). Addition of Ery in the incubation period of biomass led to a fivefold increase of the decolorization rate. The rate of Ery decolorization almost duplicated in the presence of commercial AC (0.1 g L−1 AC0). Using different modified AC samples (from the treatment of AC0), a threefold higher rate was obtained with the most basic one, \textAC\textH2ACH2, as compared with non-mediated reaction. Higher rates were obtained at pH 6.0. Chemical reduction using Na2S confirmed the recalcitrant nature of this dye. The results attest that decolorization of Ery is essentially due to enzymatic and adsorption phenomena.This work was supported by the PTDC/AMB/69335/2006 project grants (Fundacao para a Ciencia e Technologia, FCT, Portugal), BRAIN project (ID 6681, European Social Found and Romanian Government and the grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0559, Contract 265/2011

    Role of the hyporheic heterotrophic biofilm on transformation and toxicity of pesticides

    Get PDF
    The role of heterotrophic biofilm of water–sediment interface in detoxification processes was tested in abiotic and biotic conditions under laboratory conditions. Three toxicants, a herbicide (Diuron), a fungicide (Dimethomorph) and an insecticide (Chlorpyrifos-ethyl) have been tested in water percolating into columns reproducing hyporheic sediment. The detoxification processes were tested by comparing the water quality after 18 days of percolation with and without heterotrophic biofilm. Tested concentrations were 30 mg.Lx1 of Diuron diluted in 0.1% dimethyl sulfoxide (DMSO), 2 mg.Lx1 of Dimethomorph and 0.1 mg.Lx1 of Chlorpyrifos-ethyl. To characterise the detoxification efficiency of the system, we performed genotoxicity bioassays in amphibian larvae and rotifers and measured the respiration and denitrification of sediments. Although the presence of biofilm increased the production of N-(3,4 dichlorophenyl)-N-(methyl)-urea, a metabolite of diuron, the toxicity did not decrease irrespective of the bioassay. In the presence of biofilm, Dimethomorph concentrations decreased compared with abiotic conditions, from 2 mg.Lx1 to 0.4 mg.Lx1 after 18 days of percolation. For both Dimethomorph and Chlorpyrifos-ethyl additions, assessment of detoxification level by the biofilm depended on the test used: detoxification effect was found with amphibian larvae bioassay and no detoxification was observed with the rotifer test. Heterotrophic biofilm exerts a major influence in the biochemical transformation of contaminants such as pesticides, suggesting that the interface between running water and sediment plays a role in self-purification of stream reaches

    Stable U(IV) Complexes Form at High-Affinity Mineral Surface Sites

    Get PDF
    Uranium (U) poses a significant contamination hazard to soils, sediments, and groundwater due to its extensive use for energy production. Despite advances in modeling the risks of this toxic and radioactive element, lack of information about the mechanisms controlling U transport hinders further improvements, particularly in reducing environments where UIV predominates. Here we establish that mineral surfaces can stabilize the majority of U as adsorbed UIV species following reduction of UVI. Using X-ray absorption spectroscopy and electron imaging analysis, we find that at low surface loading, UIV forms inner-sphere complexes with two metal oxides, TiO2 (rutile) and Fe3O4 (magnetite) (at <1.3 U nm–2 and <0.037 U nm–2, respectively). The uraninite (UO2) form of UIV predominates only at higher surface loading. UIV–TiO2 complexes remain stable for at least 12 months, and UIV–Fe3O4 complexes remain stable for at least 4 months, under anoxic conditions. Adsorbed UIV results from UVI reduction by FeII or by the reduced electron shuttle AH2QDS, suggesting that both abiotic and biotic reduction pathways can produce stable UIV–mineral complexes in the subsurface. The observed control of high-affinity mineral surface sites on UIV speciation helps explain the presence of nonuraninite UIV in sediments and has important implications for U transport modeling

    Removal of Erythrosine B dye from water effluents using crop waste pumpkin seed hulls as adsorbent

    Get PDF
    Erythrosine B is widely used for coloring in various applications, especially in the food industry, despite its already proved toxicity and carcinogenicity. The agrowaste pumpkin seed hulls were applied as potential adsorbent for the removal of Erythrosine from aqueous solutions. Adsorption mechanism and kinetics were analyzed for design purposes. The seed hulls were characterized by specific techniques before and after dye retention. It was found that the attachment of Erythrosine B molecules on adsorbent surface may be attributed to the interactions between carboxyl and/or carbonyl groups of both dye and agrowaste wall components. A univariate approach followed by a factorial design was applied to study and analyze the experimental results as well as to estimate the combined effects of the process factors on the removal efficiency and dye uptake. Adsorption mechanism may be predominantly due to intraparticle diffusion, dependent on pore size. The four equilibrium models applied fitted the data well; the maximum adsorption capacity for Erythrosine was 16.4 mg/g. The results showed that adsorbent is effective for Erythrosine B removal for a large concentration range in aqueous solutions (5400 mg/L) in batch systems.This paper was elaborated with the support of a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0559, Contract 265/2011. The authors are very grateful to Dr Luciana Pereira from University of Minho, Institute for Biotechnology and Bioengineering-Centre of Biological Engineering, Braga, Portugal for her substantial contribution and support during experimental investigation and paper elaboration
    corecore