11,487 research outputs found

    Fluctuations of the correlation dimension at metal-insulator transitions

    Get PDF
    We investigate numerically the inverse participation ratio, P2P_2, of the 3D Anderson model and of the power-law random banded matrix (PRBM) model at criticality. We found that the variance of lnP2\ln P_2 scales with system size LL as σ2(L)=σ2()ALD2/2d\sigma^2(L)=\sigma^2(\infty)-A L^{-D_2/2d}, being D2D_2 the correlation dimension and dd the system dimension. Therefore the concept of a correlation dimension is well defined in the two models considered. The 3D Anderson transition and the PRBM transition for b=0.3b=0.3 (see the text for the definition of bb) are fairly similar with respect to all critical magnitudes studied.Comment: RevTex, 5 pages, 4 eps figures, to be published in Phys. Rev. Let

    A Study of Two-Temperature Non-Equilibrium Ising Models: Critical Behavior and Universality

    Full text link
    We study a class of 2D non-equilibrium Ising models based on competing dynamics induced by contact with heat-baths at two different temperatures. We make a comparative study of the non-equilibrium versions of Metropolis, heat bath/Glauber and Swendsen-Wang dynamics and focus on their critical behavior in order to understand their universality classes. We present strong evidence that some of these dynamics have the same critical exponents and belong to the same universality class as the equilibrium 2D Ising model. We show that the bond version of the Swendsen-Wang update algorithm can be mapped into an equilibrium model at an effective temperature.Comment: 12 pages of LaTeX plus 18 pages of postscript figures in a uuencoded file (608k

    Complete Solution of the Kinetics in a Far-from-equilibrium Ising Chain

    Full text link
    The one-dimensional Ising model is easily generalized to a \textit{genuinely nonequilibrium} system by coupling alternating spins to two thermal baths at different temperatures. Here, we investigate the full time dependence of this system. In particular, we obtain the evolution of the magnetisation, starting with arbitrary initial conditions. For slightly less general initial conditions, we compute the time dependence of all correlation functions, and so, the probability distribution. Novel properties, such as oscillatory decays into the steady state, are presented. Finally, we comment on the relationship to a reaction-diffusion model with pair annihilation and creation.Comment: Submitted to J. Phys. A (Letter to the editor

    The soluble transferrin receptor as a marker of iron homeostasis in normal subjects and in HFE-related hemochromatosis

    Get PDF
    Background and Objectives. The soluble transferrin receptor (sTfR) is a clinical marker of erythropoietic activity, also used in the diagnosis of iron deficiency. In the present paper we explore the meaning of this parameter in normal physiological conditions of iron homeostasis and in the setting of iron overload due to hereditary hemochromatosis (HH). Design and Methods. Reference values for sTfR were established in a population of 42 apparently healthy subjects, analyzed in relation to other hematologic parameters, namely, hemoglobin (Hb), mean corpuscular volume (MCV), transferrin saturation (TfSat) and serum ferritin. The same analysis was done in a group of 45 patients with HH who were homozygous for the C282Y mutation of HFE and had a wide range of TfSat values. In addition, individual serial profiles were analyzed in three patients. Results. In normal subjects circulating sTfR correlated significantly with the TfSat level, reflecting the systemic effect of iron availability on the erythropoietic activity in a normal physiological steady state. A TfSat of 25% appeared as a threshold value, below which there was a progressive increase in sTfR; this increase in sTfR occurred concomitantly with a decrease in Hb, MCV and serum ferritin. In HH patients the up-regulation of sTfR started at TfSat values as high as 50%. Interpretation and Conclusions. The fact that sTfR up-regulation started at higher TfSat values in HH patients suggests that the recognition of systemic iron available for erythropoiesis is altered in this condition. Based on these results, a new hypothesis is advanced, proposing that the HFE protein in involved as a sensor of systemic iron availability, via the soluble transferrin receptor

    Petrology and geochemistry of mafic and ultramafic cumulate rocks from the eastern part of the Sabzevar ophiolite (NE Iran): Implications for their petrogenesis and tectonic setting

    Get PDF
    The Late Cretaceous Sabzevar ophiolite represents one of the largest and most complete fragments of Tethyan oceanic lithosphere in the NE Iran. It is mainly composed of serpentinized mantle peridotites slices; nonetheless, minor tectonic slices of all crustal sequence constituents are observed in this ophiolite. The crustal sequence contains a well-developed ultramafic and mafic cumulates section, comprising plagioclase-bearing wehrlite, olivine clinopyroxenite, olivine gabbronorite, gabbronorite, amphibole gabbronorite and quartz gabbronorite with adcumulate, mesocumulate, heteradcumulate and orthocumulate textures. The crystallization order for these rocks is olivine ​± ​chromian spinel → clinopyroxene → plagioclase → orthopyroxene → amphibole. The presence of primary magmatic amphiboles in the cumulate rocks shows that the parent magma evolved under hydrous conditions. Geochemically, the studied rock units are characterized by low TiO (0.18–0.57 ​wt.%), PO (<0.05 ​wt.%), KO (0.01–0.51 ​wt.%) and total alkali contents (0.12–3.04 ​wt.%). They indicate fractionated trends in the chondrite-normalized rare earth element (REE) plots and multi-element diagrams (spider diagrams). The general trend of the spider diagrams exhibit slight enrichment in large ion lithophile elements (LILEs) relative to high field strength elements (HFSEs) and positive anomalies in Sr, Pb and Eu and negative anomalies in Zr and Nb relative to the adjacent elements. The REE plots of these rocks display increasing trend from La to Sm, positive Eu anomaly (Eu/Eu∗ ​= ​1.06–1.54) and an almost flat pattern from medium REE (MREE) to heavy REE (HREE) region [(Gd/Yb) ​= ​1–1.17]. Moreover, clinopyroxenes from the cumulate rocks have low REE contents and show marked depletion in light REE (LREE) compared to MREE and HREE [(La/Sm) ​= ​0.10–0.27 and (La/Yb) ​= ​0.08–0.22]. The composition of calculated melts in equilibrium with the clinopyroxenes from less evolved cumulate samples are closely similar to island arc tholeiitic (IAT) magmas. Modal mineralogy, geochemical features and REE modeling indicate that Sabzevar cumulate rocks were formed by crystal accumulation from a hydrous depleted basaltic melt with IAT affinity. This melt has been produced by moderate to high degree (~15%) of partial melting a depleted mantle source, which partially underwent metasomatic enrichment from subducted slab components in an intra-oceanic arc setting.The authors thank the University of Isfahan (Isfahan, Iran) and the Instituto Andaluz de Ciencias de la Tierra (IACT, Granada, Spain) for their support in field work and sample preparation and for providing geochemical analyses facilities. We are grateful to Prof. Kristoffer Szilas, Prof. Tomo Morishita and two anonymous reviewers for their useful and constructive comments that improved the manuscript

    Evaluating the capacity of human gut microorganisms to colonize the zebrafish larvae (Danio rerio)

    Get PDF
    Indexación: Scopus.In this study we evaluated if zebrafish larvae can be colonized by human gut microorganisms. We tested two strategies: (1) through transplantation of a human fecal microbiota and (2) by successively transplanting aerotolerant anaerobic microorganisms, similar to the colonization in the human intestine during early life. We used conventionally raised zebrafish larvae harboring their own aerobic microbiota to improve the colonization of anaerobic microorganisms. The results showed with the fecal transplant, that some members of the human gut microbiota were transferred to larvae. Bacillus, Roseburia, Prevotella, Oscillospira, one unclassified genus of the family Ruminococcaceae and Enterobacteriaceae were detected in 3 days post fertilization (dpf) larvae; however only Bacillus persisted to 7 dpf. Successive inoculation of Lactobacillus, Bifidobacterium and Clostridioides did not improve their colonization, compared to individual inoculation of each bacterial species. Interestingly, the sporulating bacteria Bacillus clausii and Clostridioides difficile were the most persistent microorganisms. Their endospores persisted at least 5 days after inoculating 3 dpf larvae. However, when 5 dpf larvae were inoculated, the proportion of vegetative cells in larvae increased, revealing proliferation of the inoculated bacteria and better colonization of the host. In conclusion, these results suggest that it is feasible to colonize zebrafish larvae with some human bacteria, such as C. difficile and Bacillus and open an interesting area to study interactions between these microorganisms and the host. © 2018 Valenzuela, Caruffo, Herrera, Medina, Coronado, Feijóo, Muñoz, Garrido, Troncoso, Figueroa, Toro, Reyes-Jara, Magne and Navarrete.https://www.frontiersin.org/articles/10.3389/fmicb.2018.01032/ful
    corecore