6 research outputs found
Ultrasonic transmission through multiple-sublattice subwavelength holes arrays
The ultrasonic transmission through plates perforated with 2 x 2 or 3 x 3 square array of subwavelength holes per unit cell are studied by numerical simulations. Calculations are obtained by means of a theoretical model under the rigid-solid assumption. It is demonstrated that when the inter-hole distance within the unit cell is reduced, new transmission dips appear resulting from Wood anomalies that have influence on the second and the third order Fabry-Perot peak. When the inter-hole distance within the unit cell is reduced, the transmission spectrum of the multiple-sublattice holes arrays tends to the transmission spectrum of a plate perforated with only one hole in the unit cell. (C) 2011 Elsevier B.V. All rights reserved.This work has been supported by the Spanish MICINN (MAT2010-16879), Generalitat Valenciana (PROMETEO 2010/043) and Universidad Politecnica de Valencia (PAID-06-10-1839). H.E. acknowledges the support of CSIC-JAEpredoc scholarship.Estrada Beltrán, HA.; Gómez Lozano, V.; Uris Martínez, A.; Candelas Valiente, P.; Belmar Ibáñez, F.; Meseguer Rico, FJ. (2012). Ultrasonic transmission through multiple-sublattice subwavelength holes arrays. Ultrasonics. 52(3):412-416. https://doi.org/10.1016/j.ultras.2011.09.007S41241652
Ultrasonic Lens Based on a Subwavelength Slit Surrounded by Grooves
The lensing capabilities of a single subwavelength slit surrounded by a finite array of grooves milled into a brass plate is presented. The modulation of the beam intensity of this ultrasonic lens can be adjusted by varying the groove depth. Numerical simulations as well as experimental validations at 290 kHz are shown. The experimental results are in good agreement with the numerical simulations. This system is believed to have potential applications for medical ultrasound fields such as tomography and therapy.This work was financially supported by the Spanish Ministry of Science and Innovation through project MAT2010-16879.Gómez Lozano, V.; Candelas Valiente, P.; Belmar Ibáñez, F.; Rubio Michavila, C.; Uris Martínez, A. (2014). Ultrasonic Lens Based on a Subwavelength Slit Surrounded by Grooves. Sensors. 5(14):8821-8828. https://doi.org/10.3390/s140508821S88218828514Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T., & Wolff, P. A. (1998). Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 391(6668), 667-669. doi:10.1038/35570Ghaemi, H. F., Thio, T., Grupp, D. E., Ebbesen, T. W., & Lezec, H. J. (1998). Surface plasmons enhance optical transmission through subwavelength holes. Physical Review B, 58(11), 6779-6782. doi:10.1103/physrevb.58.6779Porto, J. A., García-Vidal, F. J., & Pendry, J. B. (1999). Transmission Resonances on Metallic Gratings with Very Narrow Slits. Physical Review Letters, 83(14), 2845-2848. doi:10.1103/physrevlett.83.2845Takakura, Y. (2001). Optical Resonance in a Narrow Slit in a Thick Metallic Screen. Physical Review Letters, 86(24), 5601-5603. doi:10.1103/physrevlett.86.5601Martín-Moreno, L., García-Vidal, F. J., Lezec, H. J., Pellerin, K. M., Thio, T., Pendry, J. B., & Ebbesen, T. W. (2001). Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays. Physical Review Letters, 86(6), 1114-1117. doi:10.1103/physrevlett.86.1114Genet, C., & Ebbesen, T. W. (2007). Light in tiny holes. Nature, 445(7123), 39-46. doi:10.1038/nature05350García de Abajo, F. J. (2007). Colloquium: Light scattering by particle and hole arrays. Reviews of Modern Physics, 79(4), 1267-1290. doi:10.1103/revmodphys.79.1267Lezec, H. J. (2002). Beaming Light from a Subwavelength Aperture. Science, 297(5582), 820-822. doi:10.1126/science.1071895García-Vidal, F. J., Lezec, H. J., Ebbesen, T. W., & Martín-Moreno, L. (2003). Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit. Physical Review Letters, 90(21). doi:10.1103/physrevlett.90.213901Martín-Moreno, L., García-Vidal, F. J., Lezec, H. J., Degiron, A., & Ebbesen, T. W. (2003). Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations. Physical Review Letters, 90(16). doi:10.1103/physrevlett.90.167401Garcı́a-Vidal, F. J., Martı́n-Moreno, L., Lezec, H. J., & Ebbesen, T. W. (2003). Focusing light with a single subwavelength aperture flanked by surface corrugations. Applied Physics Letters, 83(22), 4500-4502. doi:10.1063/1.1631384Zhou, L., & Kriegsmann, G. A. (2007). Complete transmission through a periodically perforated rigid slab. The Journal of the Acoustical Society of America, 121(6), 3288. doi:10.1121/1.2721878Christensen, J., Martin-Moreno, L., & Garcia-Vidal, F. J. (2008). Theory of Resonant Acoustic Transmission through Subwavelength Apertures. Physical Review Letters, 101(1). doi:10.1103/physrevlett.101.014301Lu, M.-H., Liu, X.-K., Feng, L., Li, J., Huang, C.-P., Chen, Y.-F., … Ming, N.-B. (2007). Extraordinary Acoustic Transmission through a 1D Grating with Very Narrow Apertures. Physical Review Letters, 99(17). doi:10.1103/physrevlett.99.174301Hou, B., Mei, J., Ke, M., Wen, W., Liu, Z., Shi, J., & Sheng, P. (2007). Tuning Fabry-Perot resonances via diffraction evanescent waves. Physical Review B, 76(5). doi:10.1103/physrevb.76.054303Hou, B., Mei, J., Ke, M., Liu, Z., Shi, J., & Wen, W. (2008). Experimental determination for resonance-induced transmission of acoustic waves through subwavelength hole arrays. Journal of Applied Physics, 104(1), 014909. doi:10.1063/1.2951457Estrada, H., Candelas, P., Uris, A., Belmar, F., García de Abajo, F. J., & Meseguer, F. (2008). Extraordinary Sound Screening in Perforated Plates. Physical Review Letters, 101(8). doi:10.1103/physrevlett.101.084302Estrada, H., García de Abajo, F. J., Candelas, P., Uris, A., Belmar, F., & Meseguer, F. (2009). Angle-Dependent Ultrasonic Transmission through Plates with Subwavelength Hole Arrays. Physical Review Letters, 102(14). doi:10.1103/physrevlett.102.144301Christensen, J., Fernandez-Dominguez, A. I., de Leon-Perez, F., Martin-Moreno, L., & Garcia-Vidal, F. J. (2007). Collimation of sound assisted by acoustic surface waves. Nature Physics, 3(12), 851-852. doi:10.1038/nphys774Mei, J., Hou, B., Ke, M., Peng, S., Jia, H., Liu, Z., … Sheng, P. (2008). Acoustic wave transmission through a bull’s eye structure. Applied Physics Letters, 92(12), 124106. doi:10.1063/1.2903704Zhou, Y., Lu, M.-H., Feng, L., Ni, X., Chen, Y.-F., Zhu, Y.-Y., … Ming, N.-B. (2010). Acoustic Surface Evanescent Wave and its Dominant Contribution to Extraordinary Acoustic Transmission and Collimation of Sound. Physical Review Letters, 104(16). doi:10.1103/physrevlett.104.164301Christensen, J., Martín-Moreno, L., & García-Vidal, F. J. (2010). Enhanced acoustical transmission and beaming effect through a single aperture. Physical Review B, 81(17). doi:10.1103/physrevb.81.174104Zhu, J., Christensen, J., Jung, J., Martin-Moreno, L., Yin, X., Fok, L., … Garcia-Vidal, F. J. (2010). A holey-structured metamaterial for acoustic deep-subwavelength imaging. Nature Physics, 7(1), 52-55. doi:10.1038/nphys1804Li, Y., Liang, B., Tao, X., Zhu, X., Zou, X., & Cheng, J. (2012). Acoustic focusing by coiling up space. Applied Physics Letters, 101(23), 233508. doi:10.1063/1.4769984Christensen, J., & de Abajo, F. J. G. (2012). Anisotropic Metamaterials for Full Control of Acoustic Waves. Physical Review Letters, 108(12). doi:10.1103/physrevlett.108.124301Su, H., Zhou, X., Xu, X., & Hu, G. (2014). Experimental study on acoustic subwavelength imaging of holey-structured metamaterials by resonant tunneling. The Journal of the Acoustical Society of America, 135(4), 1686-1691. doi:10.1121/1.4868395Berenger, J.-P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2), 185-200. doi:10.1006/jcph.1994.1159Kelders, L., Allard, J. F., & Lauriks, W. (1998). Ultrasonic surface waves above rectangular-groove gratings. The Journal of the Acoustical Society of America, 103(5), 2730-2733. doi:10.1121/1.422793He, Z., Jia, H., Qiu, C., Ye, Y., Hao, R., Ke, M., & Liu, Z. (2011). Nonleaky surface acoustic waves on a textured rigid surface. Physical Review B, 83(13). doi:10.1103/physrevb.83.13210