17 research outputs found

    Photovoltaic power plants: a multicriteria approach to investment decisions and a case study in western Spain

    Full text link
    his paper proposes a compromise programming (CP) model to help investors decide whether to construct photovoltaic power plants with government financial support. For this purpose, we simulate an agreement between the government, who pursues political prices (guaranteed prices) as low as possible, and the project sponsor who wants returns (stochastic cash flows) as high as possible. The sponsor s decision depends on the positive or negative result of this simulation, the resulting simulated price being compared to the effective guaranteed price established by the country legislation for photovoltaic energy. To undertake the simulation, the CP model articulates variables such as ranges of guaranteed prices, tech- nical characteristics of the plant, expected energy to be generated over the investment life, investment cost, cash flow probabilities, and others. To determine the CP metric, risk aver- sion is assumed. As an actual application, a case study on photovoltaic power investment in Extremadura, western Spain, is developed in detail.Garcia-Bernabeu, A.; Benito Benito, A.; Bravo Selles, M.; Pla Santamaría, D. (2015). Photovoltaic power plants: a multicriteria approach to investment decisions and a case study in western Spain. Annals of Operations Research. 1-12. doi:10.1007/s10479-015-1836-2S112Andrews, R. W., Pollard, A., & Pearce, J. M. (2012). Improved parametric empirical determination of module short circuit current for modelling and optimization of solar photovoltaic systems. Solar Energy, 86(9), 2240–2254.Anwar, Y., & Mulyadi, M. S. (2011). Income tax incentives on renewable energy industry: Case of geothermal industry in USA and Indonesia. African Journal of Business Management, 5(31), 12264–12270.Aouni, B., & Kettani, O. (2001). Goal programming model: A glorious history and a promising future. European Journal of Operational Research, 133(2), 225–231.Ballestero, E. (1997). Selecting the CP metric: A risk aversion approach. European Journal of Operational Research, 97(3), 593–596.Ballestero, E. (2000). Project finance: A multicriteria approach to arbitration. Journal of Operational Research Society, 51, 183–197.Ballestero, E. (2007). Compromise programming: A utility-based linear-quadratic composite metric from the trade-off between achievement and balanced (non-corner) solutions. European Journal of Operational Research, 182(3), 1369–1382.Ballestero, E., Pérez-Gladish, B., Arenas-Parra, M., & BilbaoTerol, A. (2009). Selecting portfolios given multiple Eurostoxx-based uncertainty scenarios: A stochastic goal programming approach from fuzzy betas. INFOR: Information Systems and Operational Research, 47(1), 59–70.Ballestero, E., & Plà-Santamaría, D. (2003). Portfolio selection on the Madrid exchange: A compromise programming model. International Transactions in Operational Research, 10(1), 33–51.Ballestero, E., & Pla-Santamaria, D. (2004). Selecting portfolios for mutual funds. Omega, 32(5), 385–394.Ballestero, E., & Pla-Santamaria, D. (2005). Grading the performance of market indicators with utility benchmarks selected from Footsie: A 2000 case study. Applied Economics, 37(18), 2147–2160.Ballestero, E., & Romero, C. (1996). Portfolio selection: A compromise programming solution. Journal of the Operational Research Society, 47, 1377–1386.Bastian-Pinto, C., Brandão, L., & de Lemos Alves, M. (2010). Valuing the switching flexibility of the ethanol–gas flex fuel car. Annals of Operations Research, 176(1), 333–348.Branker, K., Pathak, M., & Pearce, J. M. (2011). A review of solar photovoltaic levelized cost of electricity. Renewable and Sustainable Energy Reviews, 15(9), 4470–4482.Casares, F., Lopez-Luque, R., Posadillo, R., & Varo-Martinez, M. (2014). Mathematical approach to the characterization of daily energy balance in autonomous photovoltaic solar systems. Energy, 72, 393–404.Chatterji, A. K., Levine, D. I., & Toffel, M. W. (2009). How well do social ratings actually measure corporate social responsibility? Journal of Economics & Management Strategy, 18(1), 125–169.Copeland, T. E., & Weston, J. (1988). Financial theory and corporate policy. Reading, Massachusetts: Addison-Wesley.Gallagher, K. S. (2013). Why & how governments support renewable energy. Daedalus, 142(1), 59–77.García-Cascales, M. S., Lamata, M. T., & Sánchez-Lozano, J. M. (2012). Evaluation of photovoltaic cells in a multi-criteria decision making process. Annals of Operations Research, 199(1), 373–391.Gupta, S. (2012). Financing renewable energy. In F. L. Toth (Ed.), Energy for development (pp. 171–186). Springer.Karaarslan, A. (2012). Obtaining renewable energy from piezoelectric ceramics using Sheppard–Taylor converter. International Review of Electrical Engineering, 7(2), 3949–3956.Koellner, T., Weber, O., Fenchel, M., & Scholz, R. (2005). Principles for sustainability rating of investment funds. Business Strategy and the Environment, 14(1), 54–70.Lorenzo, E., & Navarte, L. (2000). On the usefulness of stand-alone PV sizing methods. Progress in Photovoltaics: Research and Applications, 8(4), 391–409.Lüdeke-Freund, F., & Loock, M. (2011). Debt for brands: Tracking down a bias in financing photovoltaic projects in Germany. Journal of Cleaner Production, 19(12), 1356–1364.Mavrotas, G., Diakoulaki, D., & Capros, P. (2003). Combined MCDA-IP approach for project selection in the electricity market. Annals of Operations Research, 120(1–4), 159–170.Mendez-Rodriguez, P., Garcia Bernabeu, A., Hilario, A., & Perez-Gladish, B. (2013). Some effects on the efficient frontier of the investment strategy: A preliminary approach. Recta, 14, 131–144.Michelson, G., Wailes, N., Van Der Laan, S., & Frost, G. (2004). Ethical investment processes and outcomes. Journal of Business Ethics, 52(1), 1–10.Mills, S. J. (1994). Project finance for renewable energy. Renewable energy, 5(1–4), 700–708.ORourke, A. (2003). The message and methods of ethical investment. Journal of Cleaner Production, 11(6), 683–693.Pla-Santamaria, D., & Bravo, M. (2013). Portfolio optimization based on downside risk: A mean-semivariance efficient frontier from Dow Jones blue chips. Annals of Operations Research, 205(1), 189–201.Richter, N. (2009). Renewable project finance options: ITC, PTC, or cash grant? Power, 153(5), 90–92.Schrader, U. (2006). Ignorant advice-customer advisory service for ethical investment funds. Business Strategy and the Environment, 15(3), 200–214.Sitarz, S. (2013). Compromise programming with tehebycheff norm for discrete stochastic orders. Annals of Operations Research, 211(1), 433–446.van de Kaa, G., Rezaei, J., Kamp, L., & de Winter, A. (2014). Photovoltaic technology selection: A fuzzy MCDM approach. Renewable and Sustainable Energy Reviews, 32, 662–670.Yaqub, M., Shahram Sarkni, P., & Mazzuchi, T. (2012). Feasibility analysis of solar photovoltaic commercial power generation in California. Engineering Management Journal, 24(4), 36–49.Yazdani-Chamzini, A., Fouladgar, M. M., Zavadskas, E. K., & Moini, S. H. H. (2013). Selecting the optimal renewable energy using multi criteria decision making. Journal of Business Economics and Management, 14(5), 957–978.Yu, P. (1985). Multiple criteria decision making: Concepts, techniques and extensions. New York: Springer.Zeleny, M. (1982). Multiple criteria decision making (Vol. 25). New York: McGraw-Hill.Zhao, R., Shi, G., Chen, H., Ren, A., & Finlow, D. (2011). Present status and prospects of photovoltaic market in China. Energy Policy, 39(4), 2204–2207

    The rank reversal problem in multi-criteria decision making : a literature review

    Get PDF
    Despite the importance of multicriteria decision-making (MCDM) techniques for constructing effective decision models, there are many criticisms due to the occurrence of a problem called rank reversal. Nevertheless, there is a lack of a systematic literature review on this important subject which involves different methods. This study reviews the pertinent literature on rank reversal, based on 130 related articles published from 1980 to 2015 in international journals, which were gathered and analyzed according to the following perspectives: multicriteria technique, year and journal in which the papers were published, co-authorship network, rank reversal types, and research goal. Thus our survey provides recommendations for future research, besides useful information and knowledge regarding rank reversal in the MCDM field
    corecore