37,744 research outputs found

    Nonlinear response of superparamagnets with finite damping: an analytical approach

    Full text link
    The strongly damping-dependent nonlinear dynamical response of classical superparamagnets is investigated by means of an analytical approach. Using rigorous balance equations for the spin occupation numbers a simple approximate expression is derived for the nonlinear susceptibility. The results are in good agreement with those obtained from the exact (continued-fraction) solution of the Fokker-Planck equation. The formula obtained could be of assistance in the modelling of the experimental data and the determination of the damping coefficient in superparamagnets.Comment: 7 PR pages, 2 figure

    Exotic dynamically generated baryons with C==-1

    Full text link
    We follow a model based on the SU(8) symmetry for the interaction of mesons with baryons. The model treats on an equal footing the pseudo-scalars and the vector mesons, as required by heavy quark symmetry. The T-matrix calculated within an unitary scheme in coupled channels has poles which are interpreted as baryonic resonances.Comment: 5 pages. Proceedings for Chiral10 workshop, Valencia, June 21-24 201

    Microlensing of the broad-line region in the quadruply imaged quasar HE0435-1223

    Full text link
    Using infrared spectra of the z = 1.693 quadruply lensed quasar HE0435-1223 acquired in 2009 with the spectrograph SINFONI at the ESO Very Large Telescope, we have detected a clear microlensing effect in images A and D. While microlensing affects the blue and red wings of the H{\alpha} line profile in image D very differently, it de-magnifies the line core in image A. The combination of these different effects sets constraints on the line-emitting region; these constraints suggest that a rotating ring is at the origin of the H{\alpha} line. Visible spectra obtained in 2004 and 2012 indicate that the MgII line profile is microlensed in the same way as the H{\alpha} line. Our results therefore favour flattened geometries for the low-ionization line-emitting region, for example, a Keplerian disk. Biconical models cannot be ruled out but require more fine-tuning. Flux ratios between the different images are also derived and confirm flux anomalies with respect to estimates from lens models with smooth mass distributions.Comment: 6 pages, 4 figures, 3 tables, accepted by A&A on 10 April 201

    Isocausal spacetimes may have different causal boundaries

    Full text link
    We construct an example which shows that two isocausal spacetimes, in the sense introduced by Garc\'ia-Parrado and Senovilla, may have c-boundaries which are not equal (more precisely, not equivalent, as no bijection between the completions can preserve all the binary relations induced by causality). This example also suggests that isocausality can be useful for the understanding and computation of the c-boundary.Comment: Minor modifications, including the title, which matches now with the published version. 12 pages, 3 figure

    Anderson transition in a three dimensional kicked rotor

    Full text link
    We investigate Anderson localization in a three dimensional (3d) kicked rotor. By a finite size scaling analysis we have identified a mobility edge for a certain value of the kicking strength k=kck = k_c. For k>kck > k_c dynamical localization does not occur, all eigenstates are delocalized and the spectral correlations are well described by Wigner-Dyson statistics. This can be understood by mapping the kicked rotor problem onto a 3d Anderson model (AM) where a band of metallic states exists for sufficiently weak disorder. Around the critical region kkck \approx k_c we have carried out a detailed study of the level statistics and quantum diffusion. In agreement with the predictions of the one parameter scaling theory (OPT) and with previous numerical simulations of a 3d AM at the transition, the number variance is linear, level repulsion is still observed and quantum diffusion is anomalous with t2/3 \propto t^{2/3}. We note that in the 3d kicked rotor the dynamics is not random but deterministic. In order to estimate the differences between these two situations we have studied a 3d kicked rotor in which the kinetic term of the associated evolution matrix is random. A detailed numerical comparison shows that the differences between the two cases are relatively small. However in the deterministic case only a small set of irrational periods was used. A qualitative analysis of a much larger set suggests that the deviations between the random and the deterministic kicked rotor can be important for certain choices of periods. Contrary to intuition correlations in the deterministic case can either suppress or enhance Anderson localization effects.Comment: 10 pages, 5 figure

    A complete gauge-invariant formalism for arbitrary second-order perturbations of a Schwarzschild black hole

    Get PDF
    Using recently developed efficient symbolic manipulations tools, we present a general gauge-invariant formalism to study arbitrary radiative (l2)(l\geq 2) second-order perturbations of a Schwarzschild black hole. In particular, we construct the second order Zerilli and Regge-Wheeler equations under the presence of any two first-order modes, reconstruct the perturbed metric in terms of the master scalars, and compute the radiated energy at null infinity. The results of this paper enable systematic studies of generic second order perturbations of the Schwarzschild spacetime. In particular, studies of mode-mode coupling and non-linear effects in gravitational radiation, the second-order stability of the Schwarzschild spacetime, or the geometry of the black hole horizon.Comment: 14 page

    Geometrically constrained magnetic wall

    Full text link
    The structure and properties of a geometrically constrained magnetic wall in a constriction separating two wider regions are investigated theoretically. They are shown to differconsiderably from those of an unconstrained wall, so that the geometrically constrained magnetic wall truly constitutes a new kind of magnetic wall, besides the well known Bloch and Neel walls. In particular, the width of a constrained wall cann become very small if the characteristic length of the constriction is small, as is actually the case in an atomic point contact. This provides a simple, natural explanation for the large magnetoresistance observed in ferromagnetic atomic point contacts.Comment: RevTeX, 4 pages, 4 eps figures; v2: revised version; v3: ref. adde

    Odd Parity Light Baryon Resonances

    Get PDF
    We use a consistent SU(6) extension of the meson-baryon chiral Lagrangian within a coupled channel unitary approach in order to calculate the T-matrix for meson-baryon scattering in s-wave. The building blocks of the scheme are the pion and nucleon octets, the rho nonet and the Delta decuplet. We identify poles in this unitary T-matrix and interpret them as resonances. We study here the non exotic sectors with strangeness S=0,-1,-2,-3 and spin J=1/2, 3/2 and 5/2. Many of the poles generated can be associated with known N, Delta, Sigma, Lambda and Xi resonances with negative parity. We show that most of the low-lying three and four star odd parity baryon resonances with spin 1/2 and 3/2 can be related to multiplets of the spin-flavor symmetry group SU(6). This study allows us to predict the spin-parity of the Xi(1620), Xi(1690), Xi(1950), Xi(2250), Omega(2250) and Omega(2380) resonances, which have not been determined experimentally yet.Comment: New appendix and references adde

    Full two-photon downconversion of just a single photon

    Get PDF
    We demonstrate, both numerically and analytically, that it is possible to generate two photons from one and only one photon. We characterize the output two photon field and make our calculations close to reality by including losses. Our proposal relies on real or artificial three-level atoms with a cyclic transition strongly coupled to a one-dimensional waveguide. We show that close to perfect downconversion with efficiency over 99% is reachable using state-of-the-art Waveguide QED architectures such as photonic crystals or superconducting circuits. In particular, we sketch an implementation in circuit QED, where the three level atom is a transmon
    corecore