1,106 research outputs found
Universal Probability Distribution Function for Bursty Transport in Plasma Turbulence
Bursty transport phenomena associated with convective motion present
universal statistical characteristics among different physical systems. In this
letter, a stochastic univariate model and the associated probability
distribution function for the description of bursty transport in plasma
turbulence is presented. The proposed stochastic process recovers the universal
distribution of density fluctuations observed in plasma edge of several
magnetic confinement devices and the remarkable scaling between their skewness
and kurtosis . Similar statistical characteristics of variabilities have
been also observed in other physical systems that are characterized by
convection such as the X-ray fluctuations emitted by the Cygnus X-1 accretion
disc plasmas and the sea surface temperature fluctuations.Comment: 10 pages, 5 figure
Angular momentum transport modeling: achievements of a gyrokinetic quasi-linear approach
QuaLiKiz, a model based on a local gyrokinetic eigenvalue solver is expanded
to include momentum flux modeling in addition to heat and particle fluxes.
Essential for accurate momentum flux predictions, the parallel asymmetrization
of the eigenfunctions is successfully recovered by an analytical fluid model.
This is tested against self-consistent gyrokinetic calculations and allows for
a correct prediction of the ExB shear impact on the saturated potential
amplitude by means of a mixing length rule. Hence, the effect of the ExB shear
is recovered on all the transport channels including the induced residual
stress. Including these additions, QuaLiKiz remains ~10 000 faster than
non-linear gyrokinetic codes allowing for comparisons with experiments without
resorting to high performance computing. The example is given of momentum pinch
calculations in NBI modulation experiments
Comparison between measured and predicted turbulence frequency spectra in ITG and TEM regimes
The observation of distinct peaks in tokamak core reflectometry measurements
- named quasi-coherent-modes (QCMs) - are identified as a signature of
Trapped-Electron-Mode (TEM) turbulence [H. Arnichand et al. 2016 Plasma Phys.
Control. Fusion 58 014037]. This phenomenon is investigated with detailed
linear and nonlinear gyrokinetic simulations using the \gene code. A Tore-Supra
density scan is studied, which traverses through a Linear (LOC) to Saturated
(SOC) Ohmic Confinement transition. The LOC and SOC phases are both simulated
separately. In the LOC phase, where QCMs are observed, TEMs are robustly
predicted unstable in linear studies. In the later SOC phase, where QCMs are no
longer observed, ITG modes are identified. In nonlinear simulations, in the ITG
(SOC) phase, a broadband spectrum is seen. In the TEM (LOC) phase, a clear
emergence of a peak at the TEM frequencies is seen. This is due to reduced
nonlinear frequency broadening of the underlying linear modes in the TEM regime
compared with the ITG regime. A synthetic diagnostic of the nonlinearly
simulated frequency spectra reproduces the features observed in the
reflectometry measurements. These results support the identification of core
QCMs as an experimental marker for TEM turbulenc
Effect of the curvature and the {\beta} parameter on the nonlinear dynamics of a drift tearing magnetic island
We present numerical simulation studies of 2D reduced MHD equations
investigating the impact of the electronic \beta parameter and of curvature
effects on the nonlinear evolution of drift tearing islands. We observe a
bifurcation phenomenon that leads to an amplification of the pressure energy,
the generation of E \times B poloidal flow and a nonlinear diamagnetic drift
that affects the rotation of the magnetic island. These dynamical modifications
arise due to quasilinear effects that generate a zonal flow at the onset point
of the bifurcation. Our simulations show that the transition point is
influenced by the \beta parameter such that the pressure gradient through a
curvature effect strongly stabilizes the transition. Regarding the modified
rotation of the island, a model for the frequency is derived in order to study
its origin and the effect of the \beta parameter. It appears that after the
transition, an E \times B poloidal flow as well as a nonlinear diamagnetic
drift are generated due to an amplification of the stresses by pressure
effects
Anomalous diffusion, clustering, and pinch of impurities in plasma edge turbulence
The turbulent transport of impurity particles in plasma edge turbulence is
investigated. The impurities are modeled as a passive fluid advected by the
electric and polarization drifts, while the ambient plasma turbulence is
modeled using the two-dimensional Hasegawa--Wakatani paradigm for resistive
drift-wave turbulence. The features of the turbulent transport of impurities
are investigated by numerical simulations using a novel code that applies
semi-Lagrangian pseudospectral schemes. The diffusive character of the
turbulent transport of ideal impurities is demonstrated by relative-diffusion
analysis of the evolution of impurity puffs. Additional effects appear for
inertial impurities as a consequence of compressibility. First, the density of
inertial impurities is found to correlate with the vorticity of the electric
drift velocity, that is, impurities cluster in vortices of a precise
orientation determined by the charge of the impurity particles. Second, a
radial pinch scaling linearly with the mass--charge ratio of the impurities is
discovered. Theoretical explanation for these observations is obtained by
analysis of the model equations.Comment: This article has been submitted to Physics of Plasmas. After it is
published, it will be found at http://pop.aip.org/pop
Microturbulence studies in RFX-mod
Present-days Reversed Field Pinches (RFPs) are characterized by quasi-laminar
magnetic configurations in their core, whose boundaries feature sharp internal
transport barriers, in analogy with tokamaks and stellarators. The abatement of
magnetic chaos leads to the reduction of associated particle and heat transport
along wandering field lines. At the same time, the growth of steep temperature
gradients may trigger drift microinstabilities. In this work we summarize the
work recently done in the RFP RFX-mod in order to assess the existence and the
impact upon transport of such electrostatic and electromagnetic
microinstabilities as Ion Temperature Gradient (ITG), Trapped Electron Modes
(TEM) and microtearing modes.Comment: Work presented at the 2010 Varenna workshop "Theory of Fusion
Plasmas". To appear in Journal of Physics Conference Serie
Control of Transport-barrier relaxations by Resonant Magnetic Perturbations
Transport-barrier relaxation oscillations in the presence of resonant
magnetic perturbations are investigated using three-dimensional global fluid
turbulence simulations from first principles at the edge of a tokamak. It is
shown that resonant magnetic perturbations have a stabilizing effect on these
relaxation oscillations and that this effect is due mainly to a modification of
the pressure profile linked to the presence of both residual residual magnetic
island chains and a stochastic layer.Comment: 4 page
A sandpile model with tokamak-like enhanced confinement phenomenology
Confinement phenomenology characteristic of magnetically confined plasmas
emerges naturally from a simple sandpile algorithm when the parameter
controlling redistribution scalelength is varied. Close analogues are found for
enhanced confinement, edge pedestals, and edge localised modes (ELMs), and for
the qualitative correlations between them. These results suggest that tokamak
observations of avalanching transport are deeply linked to the existence of
enhanced confinement and ELMs.Comment: Manuscript is revtex (latex) 1 file, 7 postscript figures Revised
version is final version accepted for publication in PRL Revisions are mino
- …
