12,964 research outputs found

    Modelling and Optimising of a Light-Weight Rockfall Catch Fence System

    Get PDF
    Rockfall catch fence is a mechanical barrier system that is used at the foot of cliffs to stop and retain falling rocks from reaching nearby infrastructures. A typical system comprises of a high tensile strength wire mesh that is anchored to the ground by rigid posts and strengthened to the lateral and upslope sides by anchoring tension cables. Additional components, such as shock absorbers, might be added to improve the system capacity to dissipate energy. This multi-component system characterises by geometrical complexity and high nonlinear response to impact loads. A light-weight catch fence system is a simple system that can be easily installed in a time efficient manner using manpower rather than heavy machinery, which makes it ideal for railways located in mountainous and difficult terrain regions where there is difficulty in accessing sites with limited workspaces and restricted installation times. However, this should be combined with a proper design to ensure that the system provides the required protection to impede falling rocks from reaching the train lines. In this paper, a parametric study based on finite element analysis is developed to optimise the design of a light-weight catch fence system that has an energy absorption capacity of up to 100 kJ

    Sharp two-sided heat kernel estimates for critical Schr\"odinger operators on bounded domains

    Full text link
    On a smooth bounded domain \Omega \subset R^N we consider the Schr\"odinger operators -\Delta -V, with V being either the critical borderline potential V(x)=(N-2)^2/4 |x|^{-2} or V(x)=(1/4) dist (x,\partial\Omega)^{-2}, under Dirichlet boundary conditions. In this work we obtain sharp two-sided estimates on the corresponding heat kernels. To this end we transform the Scr\"odinger operators into suitable degenerate operators, for which we prove a new parabolic Harnack inequality up to the boundary. To derive the Harnack inequality we have established a serier of new inequalities such as improved Hardy, logarithmic Hardy Sobolev, Hardy-Moser and weighted Poincar\'e. As a byproduct of our technique we are able to answer positively to a conjecture of E.B.Davies.Comment: 40 page

    On the definition of a moist-air potential vorticity

    Full text link
    A new potential vorticity is derived by using a specific entropy formulation expressed in terms of a moist-air entropy potential temperature. The new formulation is compared with Ertel's version and with others based on virtual and equivalent potential temperatures. The new potential vorticity is subject to conservative properties ensured by the Second Law applied to the moist-air material derivatives. It is shown that the upper tropospheric and stratospheric (dry) structures are nearly the same as those obtained with Ertel's component. Moreover, new structures are observed in the low troposphere, with negative values associated with moist frontal regions. The negative values are observed in the frontal regions where slantwise convection instabilities may take place, but they are smaller than those observed with the equivalent potential vorticity. The main purpose of the article is to diagnose the behaviour of the new potential vorticity from numerical output generated by the ARPEGE NWP model, with the help of isobaric charts and vertical cross-sections. Two inversion methods are suggested. The first method could be based on the invertibility principle verified by the virtual potential vorticity, with a possibility to control and modify separately potential vorticity components in the (dry) upper and (moist) lower atmospheric levels. The other method may consist of an inversion process directly applied to the new moist-air entropy potential vorticity, because the negative values and the solenoidal term are smaller than those observed with equivalent potential vorticity, as shown by numerical evaluations.Comment: Submitted to the Q. J. R. Meteorol. Soc. in August 2012. Accepted in April 2013. Early view on the QJRMS site http://onlinelibrary.wiley.com/doi/10.1002/qj.2182/abstract. 24 pages, 10 color figures. V2: add the arXiv links of Marquet (2011), Geleyn and Marquet (2012) and Marquet and Geleyn (2013

    Construction of a Multiplex Promoter Reporter Platform to Monitor Staphylococcus aureus Virulence Gene Expression and the Identification of Usnic Acid as a Potent Suppressor of psm Gene Expression

    Get PDF
    As antibiotic resistance becomes phenomenal, alternative therapeutic strategies for bacterial infections such as anti-virulence treatments have been advocated. We have constructed a total of 20 gfp-luxABCDE dual-reporter plasmids with selected promoters from S. aureus virulence-associated genes. The plasmids were introduced into various S. aureus strains to establish a gfp-lux based multiplex promoter reporter platform for monitoring S. aureus virulence gene expressions in real time to identify factors or compounds that may perturb virulence of S. aureus. The gene expression profiles monitored by luminescence correlated well with qRT-PCR results and extrinsic factors including carbon dioxide and some antibiotics were shown to suppress or induce the expression of virulence factors in this platform. Using this platform, sub-inhibitory ampicillin was shown to be a potent inducer for the expression of many virulence factors in S. aureus. Bacterial adherence and invasion assays using mammalian cells were employed to measure S. aureus virulence induced by ampicillin. The platform was used for screening of natural extracts that perturb the virulence of S. aureus and usnic acid was identified to be a potent repressor for the expression of psm.published_or_final_versio

    Causality Problem in a Holographic Dark Energy Model

    Full text link
    In the model of holographic dark energy, there is a notorious problem of circular reasoning between the introduction of future event horizon and the accelerating expansion of the universe. We examine the problem after dividing into two parts, the causality problem of the equation of motion and the circular logic on the use of the future event horizon. We specify and isolate the root of the problem from causal equation of motion as a boundary condition, which can be determined from the initial data of the universe. We show that there is no violation of causality if it is defined appropriately and the circular logic problem can be reduced to an initial value problem.Comment: 5 page

    Transverse Momentum Distribution Through Soft-Gluon Resummation in Effective Field Theory

    Full text link
    We study resummation of transverse-momentum-related large logarithms generated from soft-gluon radiations in soft-collinear effective field theory. The anomalous dimensions of the effective quark and gluon currents, an important ingredient for the resummation, are calculated to two-loop order. the result at next-to-leading-log reproduces that obtained using the standard method for deep-inelastic scattering, Drell-Yan process, and Higgs production through gluon-gluon fusion. We comment on the extension of the calculation to next-to-next-to-leading logarithms.Comment: 13 pages, one figur

    On entropic gravity: the entropy postulate, entropy content of screens and relation to quantum mechanics

    Get PDF
    We consider the controversial hypothesis that gravity is an entropic force that has its origin in the thermodynamics of holographic screens. Several key aspects of entropic gravity are discussed. In particular, we revisit and elaborate on our criticism of the recent claim that entropic gravity fails to explain observations involving gravitationally-bound quantum states of neutrons in the GRANIT experiment and gravitationally induced quantum interference. We argue that the analysis leading to this claim is troubled by a misinterpretation concerning the relation between the microstates of a holographic screen and the state of a particle in the emergent space, engendering inconsistencies. A point of view that could resolve the inconsistencies is presented. We expound the general idea of the aforementioned critical analysis of entropic gravity in such a consistent setting. This enables us to clarify the problem and to identify a premise whose validity will decide the faith of the criticism against entropic gravity. It is argued that in order to reach a sensible conclusion we need more detailed knowledge on entropic gravity. These arguments are relevant to any theory of emergent space, where the entropy of the microscopic system depends on the distribution of matter in the emergent space.Comment: 15 pages; v2: presentation and arguments improved, particularly in section 5; accepted to Phys. Lett.

    The evolution of the binary population in globular clusters: a full analytical computation

    Full text link
    I present a simplified analytical model that simulates the evolution of the binary population in a dynamically evolving globular cluster. A number of simulations have been run spanning a wide range in initial cluster and environmental conditions by taking into account the main mechanisms of formation and destruction of binary systems. Following this approach, I investigate the evolution of the fraction, the radial distribution, the distribution of mass ratios and periods of the binary population. According to these simulations, the fraction of surviving binaries appears to be dominated by the processes of binary ionization and evaporation. In particular, the frequency of binary systems changes by a factor 1-5 depending on the initial conditions and on the assumed initial distribution of periods. The comparison with the existing estimates of binary fractions in Galactic globular clusters suggests that significant variations in the initial binary content could exist among the analysed globular cluster. This model has been also used to explain the observed discrepancy found between the most recent N-body and Monte Carlo simulations in the literature.Comment: 18 pages, 12 figures, accepted for publication by MNRA
    • …
    corecore