152 research outputs found

    Socio-economic difference in purchases of ultra-processed foods in Australia: an analysis of a nationally representative household grocery purchasing panel

    Full text link
    Background: Consumption of ultra-processed foods is associated with increased risk of obesity and non-communicable diseases. Little is known about current patterns of ultra-processed foods intake in Australia. The aim of this study was to examine the amount and type of ultra-processed foods purchased by Australian households in 2019 and determine whether purchases differed by socio-economic status (SES). We also assessed whether purchases of ultra-processed foods changed between 2015 and 2019. Methods: We used grocery purchase data from a nationally representative consumer panel in Australia to assess packaged and unpackaged grocery purchases that were brought home between 2015 to 2019. Ultra-processed foods were identified according to the NOVA system, which classifies foods according to the nature, extent and purpose of industrial food processing. Purchases of ultra-processed foods were calculated per capita, using two outcomes: grams/day and percent of total energy. The top food categories contributing to purchases of ultra-processed foods in 2019 were identified, and differences in ultra-processed food purchases by SES (Index of Relative Social Advantage and Disadvantage) were assessed using survey-weighted linear regression. Changes in purchases of ultra-processed foods between 2015 to 2019 were examined overall and by SES using mixed linear models. Results: In 2019, the mean ± SD total grocery purchases made by Australian households was 881.1 ± 511.9 g/d per capita. Of this, 424.2 ± 319.0 g/d per capita was attributable to purchases of ultra-processed foods, which represented 56.4% of total energy purchased. The largest food categories contributing to total energy purchased included mass-produced, packaged breads (8.2% of total energy purchased), chocolate and sweets (5.7%), biscuits and crackers (5.7%) and ice-cream and edible ices (4.3%). In 2019, purchases of ultra-processed foods were significantly higher for the lowest SES households compared to all other SES quintiles (P < 0.001). There were no major changes in purchases of ultra-processed foods overall or by SES over the five-year period. Conclusions: Between 2015 and 2019, ultra-processed foods have consistently made up the majority of groceries purchased by Australians, particularly for the lowest SES households. Policies that reduce ultra-processed food consumption may reduce diet-related health inequalities

    Socio-economic difference in purchases of ultra-processed foods in Australia: an analysis of a nationally representative household grocery purchasing panel

    Get PDF
    Background: Consumption of ultra-processed foods is associated with increased risk of obesity and non-communicable diseases. Little is known about current patterns of ultra-processed foods intake in Australia. The aim of this study was to examine the amount and type of ultra-processed foods purchased by Australian households in 2019 and determine whether purchases differed by socio-economic status (SES). We also assessed whether purchases of ultra-processed foods changed between 2015 and 2019. Methods: We used grocery purchase data from a nationally representative consumer panel in Australia to assess packaged and unpackaged grocery purchases that were brought home between 2015 to 2019. Ultra-processed foods were identified according to the NOVA system, which classifies foods according to the nature, extent and purpose of industrial food processing. Purchases of ultra-processed foods were calculated per capita, using two outcomes: grams/day and percent of total energy. The top food categories contributing to purchases of ultra-processed foods in 2019 were identified, and differences in ultra-processed food purchases by SES (Index of Relative Social Advantage and Disadvantage) were assessed using survey-weighted linear regression. Changes in purchases of ultra-processed foods between 2015 to 2019 were examined overall and by SES using mixed linear models. Results: In 2019, the mean ± SD total grocery purchases made by Australian households was 881.1 ± 511.9 g/d per capita. Of this, 424.2 ± 319.0 g/d per capita was attributable to purchases of ultra-processed foods, which represented 56.4% of total energy purchased. The largest food categories contributing to total energy purchased included mass-produced, packaged breads (8.2% of total energy purchased), chocolate and sweets (5.7%), biscuits and crackers (5.7%) and ice-cream and edible ices (4.3%). In 2019, purchases of ultra-processed foods were significantly higher for the lowest SES households compared to all other SES quintiles (P < 0.001). There were no major changes in purchases of ultra-processed foods overall or by SES over the five-year period. Conclusions: Between 2015 and 2019, ultra-processed foods have consistently made up the majority of groceries purchased by Australians, particularly for the lowest SES households. Policies that reduce ultra-processed food consumption may reduce diet-related health inequalities

    Benzoate Catabolite Repression of the Phenol Degradation in Acinetobacter calcoaceticus PHEA-2

    Get PDF
    Acinetobacter calcoaceticus PHEA-2 exhibited a delayed utilization of phenol in the presence of benzoate. Benzoate supplementation completely inhibited phenol degradation in a benzoate 1,2-dioxygenase knockout mutant. The mphR encoding the transcriptional activator and mphN encoding the largest subunit of multi-component phenol hydroxylase in the benA mutant were significantly downregulated (about 7- and 70-fold) on the basis of mRNA levels when benzoate was added to the medium. The co-transformant assay of E. coli JM109 with mphK::lacZ fusion and the plasmid pETR carrying mphR gene showed that MphR did not activate the mph promoter in the presence of benzoate. These results suggest that catabolite repression of phenol degradation by benzoate in A. calcoaceticus PHEA-2 is mediated by the inhibition of the activator protein MphR

    Phenotypic variation and fitness in a metapopulation of tubeworms (Ridgeia piscesae Jones) at hydrothermal vents

    Get PDF
    We examine the nature of variation in a hot vent tubeworm, Ridgeia piscesae, to determine how phenotypes are maintained and how reproductive potential is dictated by habitat. This foundation species at northeast Pacific hydrothermal sites occupies a wide habitat range in a highly heterogeneous environment. Where fluids supply high levels of dissolved sulphide for symbionts, the worm grows rapidly in a ‘‘short-fat’’ phenotype characterized by lush gill plumes; when plumes are healthy, sperm package capture is higher. This form can mature within months and has a high fecundity with continuous gamete output and a lifespan of about three years in unstable conditions. Other phenotypes occupy low fluid flux habitats that are more stable and individuals grow very slowly; however, they have low reproductive readiness that is hampered further by small, predator cropped branchiae, thus reducing fertilization and metabolite uptake. Although only the largest worms were measured, only 17% of low flux worms were reproductively competent compared to 91% of high flux worms. A model of reproductive readiness illustrates that tube diameter is a good predictor of reproductive output and that few low flux worms reached critical reproductive size. We postulate that most of the propagules for the vent fields originate from the larger tubeworms that live in small, unstable habitat patches. The large expanses of worms in more stable low flux habitat sustain a small, but long-term, reproductive output. Phenotypic variation is an adaptation that fosters both morphological and physiological responses to differences in chemical milieu and predator pressure. This foundation species forms a metapopulation with variable growth characteristics in a heterogeneous environment where a strategy of phenotypic variation bestows an advantage over specialization

    Nuclear Outsourcing of RNA Interference Components to Human Mitochondria

    Get PDF
    MicroRNAs (miRNAs) are small non-coding RNAs that associate with Argonaute proteins to regulate gene expression at the post-transcriptional level in the cytoplasm. However, recent studies have reported that some miRNAs localize to and function in other cellular compartments. Mitochondria harbour their own genetic system that may be a potential site for miRNA mediated post-transcriptional regulation. We aimed at investigating whether nuclear-encoded miRNAs can localize to and function in human mitochondria. To enable identification of mitochondrial-enriched miRNAs, we profiled the mitochondrial and cytosolic RNA fractions from the same HeLa cells by miRNA microarray analysis. Mitochondria were purified using a combination of cell fractionation and immunoisolation, and assessed for the lack of protein and RNA contaminants. We found 57 miRNAs differentially expressed in HeLa mitochondria and cytosol. Of these 57, a signature of 13 nuclear-encoded miRNAs was reproducibly enriched in mitochondrial RNA and validated by RT-PCR for hsa-miR-494, hsa-miR-1275 and hsa-miR-1974. The significance of their mitochondrial localization was investigated by characterizing their genomic context, cross-species conservation and instrinsic features such as their size and thermodynamic parameters. Interestingly, the specificities of mitochondrial versus cytosolic miRNAs were underlined by significantly different structural and thermodynamic parameters. Computational targeting analysis of most mitochondrial miRNAs revealed not only nuclear but also mitochondrial-encoded targets. The functional relevance of miRNAs in mitochondria was supported by the finding of Argonaute 2 localization to mitochondria revealed by immunoblotting and confocal microscopy, and further validated by the co-immunoprecipitation of the mitochondrial transcript COX3. This study provides the first comprehensive view of the localization of RNA interference components to the mitochondria. Our data outline the molecular bases for a novel layer of crosstalk between nucleus and mitochondria through a specific subset of human miRNAs that we termed ‘mitomiRs’
    corecore